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Abstract We analyze the effects of a strategy of constant effort harvesting in the
global dynamics of a one-dimensional discrete population model that includes den-
sity-independent survivorship of adults and overcompensating density dependence.
We discuss the phenomenon of bubbling (which indicates that harvesting can mag-
nify fluctuations in population abundance) and the hydra effect, which means that the
stock size gets larger as harvesting rate increases. Moreover, we show that the system
displays chaotic behaviour under the combination of high per capita recruitment and
small survivorship rates.
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1 Introduction

One dimensional maps have been very often used as models of population dynamics.
Despite its apparent simplicity, it is well known that they can exhibit a rich dynamics
(May 1976; Devaney 1989; Block and Coppel 1992). In many practical situations,
besides the natural death rate of the population, there are other factors that increase
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the mortality; two clear examples are exploited populations of animals or plants (by
harvesting or fishing), and the control of nuisance and invasive species. In these cases,
the harvesting or culling rate is a new parameter that enters into the model and can
be controlled to some extent. Thus, it is natural to study its influence in the dynamics
taking it as a bifurcation parameter.

Some complex and sometimes counterintuitive effects of increasing mortality have
been recently discussed; these include sudden collapses (Sinha and Parthasarathy
1996; Gyllenberg et al. 1996; Schreiber 2001; Liz 2010b), paradoxical increases (Seno
2008; Abrams 2009; Liz 2010a; Sieber and Hilker 2011), and transitions in the com-
plexity of the dynamics (Dennis et al. 1997; Anderson et al. 2008; Zipkin et al. 2009).

While sudden collapses are typical of a strategy of constant quota harvesting, over-
compensation and instabilities as a response to an increasing harvesting can occur
in exploited populations with the more usual strategy of constant effort harvesting.
Possibility of collapses due to saturating, constant effort harvesting in a Ricker model
was first demonstrated by Schreiber (2003).

Ricker (1954) already suggested the possibility of an increasing in population abun-
dance as a response to harvesting. We refer to Abrams (2009) for a recent survey about
this phenomenon, which was also termed the hydra effect. In particular, Abrams illus-
trates these phenomena in discrete one dimensional models for nonoverlapping popu-
lations when harvesting occurs prior to reproduction (see also Seno 2008; Liz 2010a).
We generalize these results to a model in which populations can overlap because a
certain fraction of adults survive from time period to time period.

Regarding the influence of harvesting in the complexity of the system, it is com-
monly accepted that harvesting helps to stabilize the population, and this is indeed a
characteristic of the usual one dimensional models (Goh 1977; May et al. 1978). How-
ever, some empirical studies have demonstrated the potential for increasing mortality
to lead to instability in plant, insect and fish populations (see Zipkin et al. 2009), and
references therein). Recent studies show that some discrete models with dimension
higher than one can explain this phenomenon; for example, the three dimensional
model for the flour beetle Tribolium analyzed by Dennis et al. (1997), and the two
dimensional model employed by Zipkin et al. (2009). In both cases, an increasing
adult mortality can destabilize the system. This is in accordance with the age-trunca-
tion hypothesis suggested by Anderson et al. (2008); using a one dimensional Ricker
model, the authors explain a higher variability in population abundance as a result
of fishing either by the influence of environmental fluctuations or by changes in the
growth rates of the population. These two factors can amplify nonlinearity, and it is
suggested that fishing may affect both.

In this paper, we show that instabilities as a result of increasing harvesting effort
can be explained in a one-dimensional discrete model without considering external
noise or changes in the demographic parameters, if survivorship of adults is allowed
(thus considering a sort of age-structure); this model was suggested by Clark (1990,
Section 7.5). Moreover, we identify the values of the intrinsic parameters of the model
(growth rate, survivorship rate) for which this effect can be observed. This is linked
to bubble structures (Bier and Bountis 1984; Vandermeer 1997; Ambika and Sujatha
2000), which appear when the usual route of period-doubling bifurcations to chaos is
broken, and period-halvings lead again the system to a stable equilibrium. Under the
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combination of high per capita recruitment and small survivorship rates, an increas-
ing harvesting leads to an infinite creation and destruction of periodic orbits, in such
a way that the bifurcation diagram shows paired period-doubling cascades, recently
described by Sander and Yorke (2011). Using the notion of strictly turbulent functions
(Block and Coppel 1992), we provide analytic results proving existence of chaos in
the considered model for particular choices of the involved parameters.

The paper is organized as follows: in Sect. 2, we introduce the model and discuss
some general properties; in Sect. 3, we analyze the hydra effect, the bubbling scenario,
and complex behaviour; in Sect. 4 we give some concluding remarks. Some proofs
and the analysis of chaotic dynamics are presented in two appendices.

2 The one-dimensional model

We consider a one-dimensional population model suggested by Clark (1990) (see also
Thieme 2003; Liz 2010b), whose main characteristic is that assumes that the parent
stock suffers only limited mortality from one period to the next, providing in this way
a sort of age structure. We assume, as usual, harvest occurs prior to breeding (see
Zipkin et al. (2009), and references therein). See Fig. 1 (cf. p. 217 in Clark 1990).

This model leads to a first-order difference equation

Pn+1 = α(1 − γ )Pn + (1 − α) f ((1 − γ )Pn), (1)

where α ∈ (0, 1) is the survivorship rate of adults, γ ∈ (0, 1) is the rate of harvesting,
f is the stock-recruitment function, and Pn represents the adult population after n
generations, before harvesting. We are considering a strategy of constant effort har-
vesting; a discussion of a similar model with constant quota harvesting can be found
in (Liz 2010b).

The parameter α can be interpreted as the fraction of energy invested into adult sur-
vivorship rather than reproduction. This interpretation assumes that density dependent
survivorship only acts on juveniles; this is the case of the Ricker model (Ricker 1954),
which is based on the observation that certain species of fish as salmon habitually
cannibalize their eggs and larvae.

The main advantage of this model is its simplicity, which allows us a better under-
standing of the dynamics, and the influence of the involved parameters, mainly, adult
survivorship, rate of harvesting, and natural growth rate on population dynamics.

Fig. 1 Population model with parental survival and harvesting
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We consider that the density dependent stock-recruitment relationship is given by
the Ricker map, which, after normalization, can be written as f (x) = xer(1−x), where
r > 0 is a growth rate parameter (see, e.g., Hastings 1997). Thus, our aim is to
understand the effects of increasing mortality in equation

xn+1 = α(1 − γ )xn + (1 − α)(1 − γ )xner(1−(1−γ )xn), (2)

depending on the values of the parameters α ∈ (0, 1), and r > 0. The limit case α = 0
corresponds to the usual Ricker model, where adults die after recruitment. A similar
model to (1) was recently proposed by Yakubu et al. (2011) to assess the performance
of a strategy of constant effort fishing; they show that Eq. (2) fits well to Atlantic cod
data from the North East Fisheries Science Center.

If we define the map

Fα(x) = αx + (1 − α)xer(1−x), (3)

then Eq. (2) can be rewritten as

xn+1 = Fα((1 − γ )xn). (4)

In some cases when γ is the relevant parameter, we will denote hγ (x) = Fα((1−γ )x).
Some properties of the map Fα and the dynamics generated by it were recently studied;
in the next proposition, we list some of them for future reference. For their proofs, we
refer to Appendix B of (Liz 2010b) and Appendix A of (Liz and Franco 2010).

Proposition 1 Let α ∈ [0, 1). The following properties hold for the map Fα defined
in (3):

(a) Fα has two fixed points: x = 0 and x = 1. Moreover, Fα(x) > x for all
x ∈ (0, 1), and Fα(x) < x for all x > 1.

(b) Fα is nondecreasing or bimodal, with two critical points 0 < c1 < c2 such that
Fα is decreasing on (c1, c2). Moreover, (SFα)(x) < 0 for all x ∈ (c1, c2), where

(SFα)(x) = F ′′′
α (x)

F ′
α(x)

− 3

2

(
F ′′
α (x)

F ′
α(x)

)2

is the Schwarzian derivative of Fα .

In the next result we provide some useful information concerning the equilibria of
Eq. (4) and their stability. As usual, we say that a positive equilibrium K of (2) is
globally stable if it is asymptotically stable and all solutions of Eq. (2) starting at a
positive initial condition converge to K .

Theorem 1 For each r > 0 and α ∈ [0, 1), let us define

γ ∗ = γ ∗(r, α) := 1 − 1

F ′
α(0)

= 1 − 1

(1 − α)er + α
. (5)

The following statements hold:
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(i) If γ ≥ γ ∗ then all solutions of Eq. (2) converge to zero.
(ii) If γ < γ ∗ then zero is unstable and Eq. (2) has a unique positive equilibrium

Kγ = 1

1 − γ

[
1 − 1

r
ln

(
1 − (1 − γ )α

(1 − α)(1 − γ )

)]
. (6)

(iii) If γ < γ ∗ and (1 − γ )F ′
α((1 − γ )Kγ ) ≥ −1 then the positive equilibrium Kγ

is globally stable.
(iv) If γ < γ ∗ and (1 − γ )F ′

α((1 − γ )Kγ ) < −1 then the positive equilibrium Kγ
is unstable.

The proof of Theorem 1 is given in Appendix A. Notice that properties (iii) and (iv)
mean that Kγ is globally stable if and only if it is locally asymptotically stable.

We can derive a couple of immediate consequences about model (1) from the above
stated results; on the one hand, overharvesting leads the population to extinction; on
the other hand, a big enough harvesting effort stabilizes the system about a globally
attracting positive equilibrium.

If we denote

r0(γ ) = ln

(
1 − (1 − γ )α

(1 − α)(1 − γ )

)
, (7)

then the condition for extinction γ ≥ γ ∗ is equivalent to r ≤ r0(γ ). It follows from
statement (iii) in Theorem 1 that Kγ is globally stable if

r0(γ ) < r ≤ 2

1 − α(1 − γ )
+ r0(γ ).

Since γ ≥ 0 implies that r0(γ ) ≥ 0, Kγ is globally stable for r ≤ 2 (whenever it
exists) regardless the values of α ∈ (0, 1) and γ ∈ (0, 1). Thus, harvesting cannot
destabilize the population at low growth rates.

3 The hydra effect, bubbles, and chaos

In this section we analyze the potential of Eq. (2) to produce the phenomena mentioned
in the Introduction: the hydra effect, bubbles, and chaos.

3.1 The hydra effect

The phenomenon of an increasing population size in response to an increase in the per-
capita mortality rate was named the hydra effect by Abrams and Matsuda (see Abrams
(2009), and references therein) in allusion to the mythological beast that grew two
heads to replace each one that was removed. Abrams (2009) has reviewed the mecha-
nisms underlying the hydra effect; in particular, this effect was observed in overcom-
pensatory discrete population models when mortality precedes density dependence,
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both when the positive equilibrium is asymptotically stable, and in systems that cycle.
In the former case, the hydra effect means that the positive equilibrium gets larger as
the mortality parameter increases. In order to provide a precise definition of the hydra
effect for non-equilibrium dynamics, we formulate the discrete-time analog of some
definitions recently introduced by Sieber and Hilker (2011) for continuous population
models. To do this, we denote by {xn(γ )}n≥0 the solution of (2) for a given parameter
γ ∈ (0, 1) and an initial condition x0 ≥ 0.

Definition 1 The mean value map is defined as the function φ : M ×(0, 1) → [0,∞)

given by

φ(x0, γ ) = lim
n→∞

1

n

n−1∑
i=0

xi (γ ),

where M ⊂ [0,∞) is the subset of initial conditions for which the previous limit
exists.

The mean value map assigns to an initial condition x0 and a harvesting rate γ the
asymptotic mean value of the solution {xn(γ )}n≥0. It is clear that if Kγ is an equilib-
rium of (2) then φ(Kγ , γ ) = Kγ , and, if {xn} is a periodic solution with prime period
m then φ(Kγ , γ ) = (1/m)

∑m−1
i=0 xi .

Regarding the hydra effect, we consider a concept slightly different from Definition
3 in (Sieber and Hilker 2011).

Definition 2 (Hydra effect)

1. The population governed by (2) experiences a hydra effect over an interval
I ⊂ [0, 1] if there is an initial condition x0 such that the map γ 
→ φ(x0, γ )

is increasing on I .
2. We say that a hydra effect occurs in a subset D of (0,∞) over an interval I if the

previous statement holds for all x0 ∈ D.

An interesting example is the case α = 0 of (2), that is, the Ricker model with
constant effort harvesting

xn+1 = (1 − γ )xner(1−(1−γ )xn). (8)

Seno (2008) proved that the positive equilibrium Kγ of (8) is globally stable and gets
larger as γ increases if and only if r > 1 and γ ∈ (1 − e2−r , 1 − e1−r )∩ (0, 1). How-
ever, Kγ actually increases with γ for all γ ∈ (0, 1 − e1−r ), although it is unstable
for γ ∈ (0, 1 − e2−r ) if r > 2 (see Liz 2010a).

Since it is known that the positive equilibrium of (8) equals the average population
size even in the case of chaotic dynamics (see, e.g., Gyllenberg et al. 1996), it follows
that, in the terms of Definition 1, for Eq. (8) we have M = [0,∞) and

φ(x0, γ ) =
⎧⎨
⎩

Kγ if x0 > 0 and 0 < γ < γ ∗ = 1 − e−r ,

0 if x0 = 0, or x0 > 0 and γ ∈ [γ ∗, 1).
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Thus, for Eq. (8), there is a hydra effect in (0,∞) over the interval (0, 1 − e1−r ) (see
the case α = 0, r = 4 in Fig. 3).

Equation (2) with α > 0 does not share the same property about the mean popu-
lation value in the Ricker model, and it can happen that, as harvesting is increased,
the positive equilibrium gets larger while the mean population size decreases (see
Fig. 3); however, our numerical simulations suggest that the relationship φ(x0, γ ) ≥
Kγ holds for all x0 > 0 and γ < γ ∗ = 1 − 1/((1 − α)er + α) (see again Fig. 3, and
also Figs. 4, 5, 6, 7 and 8).

When the positive equilibrium Kγ of (2) is asymptotically stable (and hence glob-
ally stable, by Theorem 1), a rigorous analysis of the hydra effect is easy to obtain.
When Kγ is unstable, we discuss the occurrence of a hydra effect based on numerical
simulations.

In the next result, we consider the case when Kγ is globally stable.

Proposition 2 A hydra effect in Eq. (2) occurs in (0,∞) over an interval (γ1, γ2)

defined implicitly by the inequalities

1

1 − α(1 − γ )
+ r0(γ ) < r ≤ 2

1 − α(1 − γ )
+ r0(γ ) , (9)

where r0(γ ) is defined in (7).
Moreover, if

r ≤ 1

1 − α(1 − γ )
+ r0(γ ) (10)

then Eq. (2) does not experience a hydra effect at any point x0 ≥ 0.

Proof Theorem 1 ensures that the positive equilibrium Kγ is globally stable if the
second inequality in (9) holds. Thus there is a hydra effect if and only if Kγ increases
with γ . Differentiating the right-hand side of (6) with respect to γ , it follows that
∂Kγ /∂γ > 0 if and only if the first inequality in (9) holds.

On the other hand, if (10) is true then it follows from Theorem 1 that either the posi-
tive equilibrium is globally stable or all solutions converge to zero. Since ∂Kγ /∂γ ≤ 0,
a hydra effect cannot occur.

Proposition 2 allows us to represent in the plane of parameters (γ, α) the values for
which there is a hydra effect in Eq. (2) for each fixed r when the positive equilibrium
is globally stable. In Fig. 2, we do it for r = 4. There is a hydra effect when γ ranges
over intervals joining (α, γ1) with (α, γ2) which lie between the lower solid line and
the dashed line. Hydra effect does not occur over horizontal segments included in the
region above the dashed line. A similar diagram can be produced for any r > 2. For
1 < r ≤ 2, the lower solid line disappears (because the positive equilibrium cannot
be unstable), and then the region below the dashed line determines the intervals for
which there is a hydra effect.

In Fig. 2 (right) we show how the equilibrium varies with γ for r = 4 and α =
0.6, 0.85, 0.95. In the three cases, the positive equilibrium is always globally stable
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Fig. 2 Left Regions of stability and the hydra effect in the plane of parameters (γ, α) for Eq. (2) with r = 4.
Right Variation of the positive equilibrium as γ is increased in Eq. (2) for r = 4, and different values of α

(when it exists) but the magnitude of the effect in the equilibrium as γ increases is
quite different.

Figure 2 suggests some words of caution if one uses model (2) to justify that
increasing harvesting is a good strategy to increment the population stock: the transi-
tion between the value of γ at which the population size at the equilibrium is maximum
and the critical γ after which population is doomed to extinction is very fast. A similar
comment applies to Fig. 3.

As mentioned before, a hydra effect can also occur when Kγ is unstable (and hence,
in general, φ(x0, γ ) �= Kγ ). Our simulations show that occurrence of hydra effect in
the unstable region of Fig. 2 is irregular. In Fig. 3 we represent the mean population
abundance for r = 4 and four different choices of α, choosing the initial condition
x0 = 0.5. While for α = 0 the equality φ(x0, γ ) = Kγ holds, and then there is a
hydra effect over the interval [0, 1 − e−3), for small positive values of α the mean
abundance can decrease for small values of γ (see the case α = 0.05 in the figure).
As the value of α is increased, we observe a hydra effect except for an interval of
intermediate values of γ (see the case α = 0.2). Finally, for values of α close to the
region of stability of the equilibrium, Eq. (2) seems to display a hydra effect over a
large subinterval of [0, 1], as in the case α = 0 (see the case α = 0.4).
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Fig. 3 Variation of the mean population abundance as γ is increased in Eq. (2) for r = 4, and different
values of α. The solid lines represent the mean value φ(0.5, γ ); the dashed lines correspond to the unstable
equilibrium. In the case α = 0, the mean value coincides with the equilibrium even when the equilibrium is
unstable. We have included the bifurcation diagram to make clear the region of instability. The key values
represented in the γ -axis are γ∗ = 1 − e−2, where the equilibrium becomes stable after a period-halving
bifurcation, γ2 = 1 − e−3, until which there is a hydra effect, and γ ∗ = 1 − e−4, after which the total
population is driven to extinction

Different choices of the initial condition x0 provide exactly the same profiles for the
mean population abundance. Thus, we guess that when hydra effect occurs in Eq. (2),
it holds for almost all positive initial conditions. For α = 0, this is a consequence of
the fact that F0(x) = xer(1−x) is a unimodal map with negative Schwarzian derivative;
see, e.g., the nice survey of Thunberg (2001). Although for all α ∈ (0, 1) a locally
stable equilibrium of (2) is globally stable, similar results for arbitrary periodic orbits
of bimodal maps do not seem to be available in the literature.

3.2 Bubbles and chaos

The period-doubling route to chaos is a very well-known feature in discrete dynamical
systems, especially in the quadratic family f (x) = r x(1− x), with r ranging between
2 and 4 (see, e.g., Devaney 1989). Bier and Bountis (1984) showed that in simple non-
linear discrete dynamical systems involving the variation of two or more parameters,
the period-doubling process can be broken, giving rise to period-halving bifurcations,
which in turn stabilize the system around an equilibrium point or a periodic solution.
Thus, the bifurcation diagram forms closed loop-like structures similar to bubbles,
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Fig. 4 Primary bubble in Eq. (2) with r = 4 and α = 0.55 as γ is increased. The dashed line corresponds
to the unstable equilibrium, and the thick line is the mean population abundance, which coincides with the
equilibrium when it is asymptotically stable

and the effect is usually referred to as bubbling (see, e.g., Fig. 4). The possibility for
bubbling in families of maps depending smoothly on a parameter was already noted by
Devaney (1989); cf. Remark in p. 154 and Figure 19.2 in p. 155. For more discussions
and related references, see Ambika and Sujatha (2000).

The bubbling effect was found in several papers in an ecological context, besides
those already mentioned in the Introduction. For example, Stone (1993) and Stone
and Hart (1999) observed this effect in the usual one-dimensional models of popula-
tion dynamics when a constant migration is considered; Vandermeer (1997) showed
that quartic maps resulting from the composition of two logistic maps can exhibit bub-
bling; a similar effect in two-dimensional discrete models was found by Newman et al.
(2002) for a population with a refuge, and by Schreiber (2007) for a host-parasitoid
system.

Although the terms bubble and bubbling have been widely employed, we did not
find a formal definition in the literature. We give a definition for one-dimensional
maps depending on a parameter. Consider a family fλ : I → I of C1-maps defined
on a real interval I and depending smoothly on a parameter λ ∈ Λ, where Λ is a
real interval too. We assume that, for each value of λ, there is a compact attracting
invariant interval for fλ, in such a way that the ω-limit set ωλ(x0) of any initial condi-
tion x0 ∈ I is invariant, nonempty and compact. Assume also that there is an interval
J ⊂ Λ and λ1, λ2 ∈ J such that fλ has a continuous branch of equilibria Kλ satisfying
| f ′
λ(Kλ)| > 1 for all λ ∈ (λ1, λ2), and | f ′

λ(Kλ)| < 1 for all λ ∈ J \ (λ1, λ2).

Definition 3 In the above conditions, we say that the family { fλ}λ∈J exhibits
bubbling if, for some x0 ∈ I, ωλ(x0) = Kλ for all λ ∈ J \ (λ1, λ2), and
M(λ, x0) := maxωλ(x0) > minωλ(x0) := m(λ, x0) for all λ ∈ (λ1, λ2).
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In this case, the set

B =
⎛
⎝ ⋃
λ1<λ<λ2

(λ,m(λ, x0))

⎞
⎠ ⋃ ⎛

⎝ ⋃
λ1<λ<λ2

(λ,M(λ, x0))

⎞
⎠

is called a bubble.

The trace of a bubble may be discontinuous, that is, the maps λ 
→ m(λ, x0) and
λ 
→ M(λ, x0)may exhibit jump discontinuities e.g. if there are saddle-node bifurca-
tions.

The dynamics of fλ for values of λ ∈ (λ1, λ2) inside a bubble can be very simple
or even chaotic; see, e.g., Figs. 4 and 6. The simplest bubble, illustrated by Fig. 4,
is called a primary bubble. It is characterized by the fact that ωλ(x0) is a periodic
orbit of prime period two {x1(λ), x2(λ)}, with x1(λ) < Kλ < x2(λ), for every value
of λ ∈ (λ1, λ2). If the branches of 2-periodic orbits experience other period-dou-
bling followed by period-halving bifurcations on the interval (λ1, λ2), then secondary
bubbles appear (Bier and Bountis 1984); see Fig. 6.

When a bubble exists, the equilibrium typically losses and regains its stability in
two period-doubling bifurcations, where f ′

λ(Kλ) = −1. This fact, together with prop-
erty (b) of Proposition 1, ensures the existence of a stable 2-periodic orbit for values
of λ ∈ (λ1, λ2) close to λ1 and λ2; see, e.g., Theorem 12.7 and Remark 2 below
Corollary 12.8 in (Devaney 1989). Thus, for fixed values of r and α, bubbles appear
in Eq. (2) as γ is increased if and only if there are two values 0 < γ1 < γ2 < 1 such
that h′

γi
(Kγi ) = −1, for i = 1, 2, where hγ (x) = Fα((1 − γ )x).

Since, by Theorem 1, the positive equilibrium of (2) is globally stable for suffi-
ciently large values of γ , bubbling is an appropriate mathematical concept to show
that increasing mortality can lead to instability in (2). Zipkin et al. (2009) found bub-
ble-type structures in the numerical study of a discrete population model with two
stages (juveniles and adults), when adult mortality is increased. We show the same
phenomenon for the simpler one-dimensional model (1).

The next result provides the values of the parameters r and α for which (2) exhibits
bubbling.

Theorem 2 Equation (2) exhibits bubbling for fixed values of r andα as γ is increased
if and only if r > 3 and

α1(r) := 1 − 2

r
< α <

er−3

2 + er−3 := α2(r). (11)

We give the proof of Theorem 2 in Appendix A. Figure 5 (left) shows the range of
values of α for which Eq. (2) exhibits bubbling as γ is increased, for r between 3 and
10. For example, for r = 4, there is bubbling when α ∈ (0.5, 0.576). For α > 0.576
the positive equilibrium is globally stable (when it exists) regardless the value of α,
while for α < 0.5 the equilibrium may be unstable but bubbling is not possible. In the
right-hand side of Fig. 5, we show this range in the plane (γ, α). A primary bubble
for α = 0.55 is numerically observed in Fig. 4.
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of stability in the plane of parameters (γ, α) for Eq. (2) with r = 4. The shaded band between the lines
α = α1(4) and α = α2(4) represents the values of α for which bubbles exist as γ is increased
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Fig. 6 Bubbling scenario in Eq. (2) with r = 6 as γ is increased. Left secondary bubbles for α = 0.73;
right chaotic bubbles for α = 0.675. In both cases, the dashed line corresponds to the unstable equilibrium,
and the thick line is the mean population abundance

In Fig. 6 (left), we represent the bifurcation diagram for Eq. (2) with r = 6 and
α = 0.73, showing secondary bubbles. Moreover, our numerical simulations suggest
that harvesting can magnify fluctuations from a globally stable equilibrium to chaotic
oscillations; see Fig. 6 (right); we call the structures in the bifurcation diagram cha-
otic bubbles. This means that the period-halving bifurcations start after the family of
maps gγ has reached a chaotic regime. Chaotic bubbles are sometimes referred to as
Feigenbaum remerging trees (Bier and Bountis 1984; Thamilmaran and Lakshmanan
2002). More recently, these structures were called paired period-doubling cascades
(Sander and Yorke 2011).

The result stated in Theorem 2 is in agreement with numerical results found by
Zipkin et al. (2009) for a two dimensional stage-structured model, namely, that insta-
bility as a result of harvest occurs in the case of adult-only harvest when both maximum
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Fig. 7 Bubbles for the second iteration of hγ (x) = Fα((1 − γ )x) with r = 4 and small survivorship
rates. In both cases, the dashed line corresponds to the unstable equilibrium, and the thick line is the mean
population abundance
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Fig. 8 Chaotic bubbles for h2
γ with r = 4 and survivorship rate α = 0.02. On the left, the parameter γ

ranges from 0 to 1; we can observe two period-five paired cascades (as usual, the dashed line corresponds
to the unstable equilibrium, and the thick line is the mean population abundance). On the right, we show a
zoom of the small box on the left; the curve of unstable period five points is also displayed (dashed line) to
emphasize the critical values of γ where two period-five saddle-node bifurcations occur

per capita recruitment and adult survivorship are high. Zipkin et al. also claimed that
no harvest strategy could cause instability in a population when adult survivorship
was low. Although it is true that bubbling is not possible for α < 1/3 in (2), this fact
does not mean that harvesting does not magnify fluctuations of population abundance.
For small survivorship rates, we observe numerically bubbles for the second iteration
h2
γ = hγ ◦hγ of the map hγ (x) = Fα((1−γ )x), thus destabilizing a stable 2-periodic

orbit of (2). This fact also indicates that variability in the population size increases as
γ is increased. See Fig. 7.

For even smaller adult survivorship rates, our numerical simulations show that there
are chaotic bubbles for h2

γ . In Fig. 8, for Eq. (2) with r = 4 and α = 0.02, we can
observe two period-five paired cascades between γ = γa ≈ 0.486 and γ = γb ≈
0.605. At γa and γb, two period-five cycles are created and destroyed, respectively, in
two period-five saddle-node bifurcations. The stable cycle undergoes infinitely many
period doublings followed by period halvings, giving place to paired cascades. We
show a detail on the right, including the branch of unstable periodic points. We refer to
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Sander and Yorke (2011) for precise definitions and results on paired cascades. Figure
8 illustrates that increasing harvesting at low survivorship rates can enhance variability
in the population size from a simple period-two regime to a complex dynamics.

The numerical bifurcation diagrams shown in Fig. 8 suggest that the dynamics of
Eq. (2) with r = 4 and α = 0.02 is chaotic for some values of the harvesting param-
eter γ . In Appendix B, we rigorously prove that model (2) with r = 4, α = 0.02, and
γ = 0.55 is chaotic, and, due to the robustness of our approach, the same is true for a
set of nearby values of the parameters.

The bifurcation diagrams displayed in Figs. 4, 5, 6, 7 and 8 indicate that bubbling
and hydra effects often co-occur. Actually, a decrease in the mean population size as γ
increases seems to happen almost only for intervals of the parameter γ inside a stable
stationary or periodic regime, but not when a bubble is created.

Finally we note that, while the hydra effect in discrete population models usually
requires that mortality precedes density dependence (Abrams 2009), bubbling occurs
in the same parameter range if reproduction precedes harvesting. Indeed, if we consider
equation

xn+1 = (1 − γ )Fα(xn), (12)

where Fα is defined in (3), then, for each value of γ , Eqs. (2) and (12) are topologically
conjugated by the homeomorphism ψ(x) = (1 − γ )x . In particular, Kγ is a positive
equilibrium of (2) if and only if Pγ = (1 − γ )Kγ is a positive equilibrium of (12);
moreover, Pγ and Kγ have the same stability properties. In Fig. 9, we represent two
bubbles for r = 4 and α = 0.55; the upper one corresponds to Eq. (2), and the lower
one to Eq. (12). It is easy to check that there is no hydra effect in Eq. (12) when the
equilibrium is stable, because ∂Pγ /∂γ < 0 for all γ ∈ (0, 1). Numerical simula-
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0.5
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2.0

2.5

x

γ

α =0.55, r=4

Fig. 9 Primary bubbles in Eqs. (2) and (12) with r = 4 and α = 0.55 as γ is increased. The dashed lines
inside the bubbles correspond to the unstable equilibria. The upper bubble (blue) corresponds to model (2),
when harvesting occurs prior to reproduction; the lower one (red) corresponds to Eq. (12), when harvesting
occurs after reproduction (color figure online)
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tions show that a hydra effect occurs very rarely in Eq. (12) also when the positive
equilibrium is unstable.

4 Discussion

It is clear that exploited populations exhibit changes in their abundance in response to
harvesting. Moreover, both empirical and theoretical observations have demonstrated
that these changes are often unexpected and counterintuitive.

It is remarkable that simple one-dimensional discrete models serve as a paradigm
of most of these phenomena; for a strategy of constant quota harvesting in a dis-
crete model for a population without adult survivorship (such as the Ricker model),
Schreiber (2001) provided a complete classification of the dynamics, which includes
sudden collapses and essential extinction windows. Recently, Liz (2010b) showed that
the effects of constant harvesting in the dynamics becomes even more complex when
it is assumed that adult population undergoes only limited mortality from one period
to the next.

In this paper, we have investigated the effects of an strategy of constant effort har-
vesting, which is usually employed in fisheries (Clark 1990). For it, we have considered
a discrete model with density-independent survivorship of adults and overcompensat-
ing density dependence. Our main findings are the following:

On the one hand, assuming that harvesting occurs prior to breeding, the population
abundance can get larger in response to an increase in the harvesting effort, thus exhib-
iting the hydra effect recently reviewed by Abrams (2009). In this way, we generalize
the results in previous papers (Seno 2008; Abrams 2009; Liz 2010a). We identify
the range of the survivorship and harvesting parameters for which this paradoxical
effect occurs when the positive equilibrium is stable, and we provide some numerical
results when the equilibrium is unstable. Overall, we conclude that the hydra effect is
quite frequent in the population model considered when the survivorship rate is not
too high. Moreover, the hydra effect occurs for all positive initial conditions, so it is
a highly observable phenomenon; we prove this fact when the equilibrium is stable,
and extensive numerical simulations indicate that it is also true in the unstable case.

On the other hand, our results confirm that harvesting can magnify fluctuations in
population abundance for relatively high values of the per-capita recruitment. Since
our model assumes adult-only harvesting, these results are in agreement with the age
truncation effect, which has been documented in several populations (see Anderson
et al. 2008), and its references). This is a clear difference with models for single-species
populations without adult survivorship, where harvesting typically helps to simplify
the dynamics (Goh 1977; May et al. 1978). For stage-structured models, transitions in
the complexity of the dynamics due to an increase in adult mortality was observed in
laboratory cultures of the flour beetle Tribolium, as reported by Dennis et al. (1997).

In accordance with the conclusions stated by Zipkin et al. 2009 for a stage-struc-
tured discrete population model with two age classes (juveniles and adults), harvesting
leads to instability in our model when both maximum per capita recruitment and adult
survivorship are high; moreover, we determine analytically the range of these two
parameters for which harvesting can destroy the stability of the positive equilibrium,
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producing bubbles in the bifurcation diagram (see Theorem 2). But, in addition to
this, we observe that variability in the population size can be dramatically enhanced,
as the harvesting rate is increased, also for low survivorship rates. Actually, in this
case, a population which exhibits a stable period-two regime without harvesting can
be driven to a chaotic regime as harvesting increases. Existence of chaos is suggested
by numerically computed bifurcation diagrams, in the form of paired period-doubling
cascades (Sander and Yorke 2011). This means that the usual route to chaos is reversed
in such a way that further increasing harvesting leads the population to a more stable
regime again. For some values of the parameters, we are able to prove analytically
existence of chaos, which is robust under small perturbations.

We emphasize that the two counterintuitive effects of increasing harvesting studied
for Eq. (2) (bubbling and hydra effect) often co-occur, and the hydra effect can also
happen within a chaotic regime. While regarding the phenomenon of bubbling it does
not matter whether harvesting occurs prior or after reproduction, the hydra effect is
typical from models when mortality precedes density dependence, as already noticed
by Abrams (2009) and Seno (2008).

Another by-product of our numerical results is that, while in the Ricker model
(without adult survivorship) the positive equilibrium is equal to the mean population
size even in the unstable cases, if the species invest some energy in survivorship rather
than reproduction then the mean population size is usually greater than the equilibrium.

An interesting open problem is to study how the results in this paper may change
when evolution is taken into account. For example, Gyllenberg et al. (1996) showed
that adaptive adjustment of reproduction in a single-species modeled by a Ricker map
may decrease the mean amplitude of oscillations when the positive equilibrium is
unstable.

Appendices

A Proof of Theorems 1 and 2

Proof of Theorem 1. As usual, we denote by hγ (x) = Fα((1 − γ )x), in such a way
that Eq. (2) can be written as

xn+1 = hγ (xn).

Statement (i) is a consequence of the fact that γ ≥ γ ∗ implies that hγ (x) < x for all
x > 0. Thus, all solutions of (2) starting at a positive initial condition are decreasing
and converge to zero.

If γ < γ ∗ then h′
γ (0) = (1 − γ )F ′

α(0) > 1, so that zero is unstable. Formula (6)
is easy to obtain from the equality hγ (x) = x . Thus, statement (ii) is proved.

Assertion (iii) is derived from Corollary 2.9 in (El-Morshedy and Jiménez-López
2008), using Proposition 1 (b), analogously to the proof of Theorem 1 in (Liz and
Franco 2010).

Finally, statement (iv) is a direct consequence of the criterion for linear stability. ��
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Proof of Theorem 2. By Theorem 1, we know that, for a fixed r > r0(γ ), the positive
equilibrium Kγ of (2) changes its asymptotic stability when

r = ln

(
1 − (1 − γ )α

(1 − α)(1 − γ )

)
+ 2

1 − α(1 − γ )
. (13)

Let us consider the function

G(α, γ ) = 2

1 − α(1 − γ )
+ ln

(
1 − (1 − γ )α

(1 − α)(1 − γ )

)
− r. (14)

An application of the Implicit Function Theorem allows us to ensure that Eq. (13)
defines α as a smooth function of γ and

α′(γ ) = −∂G/∂γ

∂G/∂α
. (15)

First we prove that, for every fixed γ ∈ [0, 1), there is at most one value of
α ∈ [0, 1] for which (13) holds. Indeed, let us fix γ ∈ [0, 1) We introduce the
variable z = 1 − α(1 − γ ), α ∈ [0, 1]. With this notation, (13) is equivalent to

g(z) := 2

z
+ ln

(
z

z − γ

)
= r. (16)

Since

g′(z) = −2

z2 + 1

z
− 1

z − γ
,

and 0 < z − γ ≤ z, it follows that g is decreasing on (0, 1]. It is hence clear that Eq.
(16) has at most one solution z(γ ). Therefore, there is at most one solution of (13)
given by

α(γ ) = 1 − z(γ )

1 − γ
.

We notice that, for γ = 0, this solution exists and it is given by

α(0) = 1 − z(0) = 1 − 2

r
.

On the other hand, (15) leads to

α′(γ ) = (1 − α) (3α(1 − γ )− 1)

(1 − γ )(2 − γ + α(γ 2 + γ − 2))
.

The denominator of this fraction is always positive, and hence α′(γ ) < 0 if and only
if 3α(1 − γ ) < 1.
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In particular, α′(0) ≤ 0 implies that α′(γ ) < 0 for all γ ∈ (0, 1). In this case,
there is not primary bubbling because α is a one-to-one function of γ . Thus we need
α′(0) > 0, which is equivalent to α(0) > 1/3. In this case, α is an increasing function
of γ until it intersects the increasing curve γ = 1−1/(3α) at a point γ̄ ∈ (0, 1−e2−r ).
Notice that α(γ ) is always decreasing at γ = 1 − e2−r , since this corresponds to the
case α = 0, and then

α′(1 − e2−r ) = −1

(2 − γ )(1 − γ )
< 0.

Thus, there are two points where the stability of Kγ changes if and only if
α ∈ (α1(r), α2(r)), where

α1(r) = α(0) = 1 − 2

r
; α2(r) = α(γ̄ ) = er−3

2 + er−3 .

To complete the proof, we emphasize that a necessary condition for the existence
of primary bubbling is α1(r) > 1/3, which is equivalent to r > 3. ��

B Chaotic dynamics and strictly turbulent functions

In this appendix, we give the precise definition of chaos, some direct consequences of
this definition, and a mechanism to detect chaotic dynamics. As usual, we denote by
Z and R the set of integer and real numbers respectively.

Definition 4 Consider (X, d) a metric space and let ψ : Dψ → X be a continuous
map with D ⊂ Dψ . We say thatψ induces chaotic dynamics on two symbols on the set
D if there exist two disjoint compact sets K0,K1 ⊂ D such that, for each two-sided
sequence {si }i∈Z ∈ {0, 1}Z, there exists a corresponding sequence {ωi }i∈Z ∈ DZ such
that

ωi ∈ Ksi and ωi+1 = ψ(ωi ) for all i ∈ Z, (17)

and, whenever {si }i∈Z is a k-periodic sequence (that is, si+k = si , ∀ i ∈ Z) for some
k ≥ 1, there exists a k-periodic sequence {ωi }i∈Z ∈ DZ satisfying (17).

In contrast with other definitions of chaos, we can say that if a map is chaotic according
Definition 4, then it is also chaotic in the sense of Block-Coppel and also in the sense
of “coin-tossing” (Kirchgraber and Stoffer 1989; Aulbach and Kieninger 2001). More-
over, Definition 4 guarantees the existence of an invariant compact set Λ ⊂ D such
that ψ |Λ is semi-conjugate to the Bernoulli shift on two symbols, topologically tran-
sitive, and has sensitive dependence on initial conditions, (see Lemma 5.1 in (Pireddu
and Zanolin 2007) or Theorem 2.2 in (Medio et al. 2009)).

To prove the presence of chaotic dynamics we will use the notion of strictly turbulent
function. More precisely,
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Definition 5 Let f : I −→ I be a continuous function defined on an interval I ⊂ R.
We say that f is strictly turbulent if there exist two disjoint compact intervals J1, J2
such that J1 ∪ J2 ⊂ f (J1) and J1 ∪ J2 ⊂ f (J2).

It was proven in Proposition II.3.15 in (Block and Coppel 1992) (see also Theorem 2.3
in (Medio et al. 2009)) that every strictly turbulent function induces chaotic dynamics
on two symbols.

Next we apply the previous results to Eq. (2). Consider equation

xn+1 = Fα((1 − γ )xn) =: Gα(xn), (18)

where Fα(x) = αx + (1 − α)xer(1−x), and define Hα(x) = G2
α(x) = Gα(Gα(x)).

Clearly, Hα is strictly turbulent if there exist four constants 0 < a1 < b1 < a2 < b2
satisfying that

Hα(a1) < a1; Hα(b1) > b2; Hα(a2) > b2; Hα(b2) < a1. (19)

It follows from straightforward computations that the four inequalities in (19)
hold for the parameters α = 0.02, γ = 0.55, r = 4 and the constants a1 =
1.53, b1 = 2.45, a2 = 2.5, and b2 = 4.25. Indeed, we have that Hα(1.53) =
1.47486, Hα(2.45) = 4.79068, Hα(2.5) = 4.69515 and Hα(4.25) = 1.49457. In
this way, we can conclude that under (19), Eq. (18) has infinitely many periodic points
and there is a compact invariant set Γ such that Gα|Γ is topologically transitive and
has sensitive dependence on initial conditions. In this case, Γ = Λ ∪ Gα(Λ), where
Λ is the corresponding invariant set for Hα (see the comment below Definition 4). At
this point it is also clear the robustness of our method under small perturbations, since
it works for all values of (α, γ, r) for which (19) still holds.
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