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Abstract We investigate the stabilization of periodic
orbits of one-dimensional discrete maps by using a
proportional feedback method applied in the form of
pulses. We determine a range of the parameter μ val-
ues representing the strength of the feedback for which
all positive solutions of the controlled equation con-
verge to a periodic orbit.

An important feature of our approach is that the re-
quired assumptions for which our results hold are met
by a general class of maps, improving in this way some
previous results. We discuss the applicability of our
scheme to some models of population dynamics, and
give numerical simulations to illustrate our analytical
results.
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1 Introduction

One of the meaningful mechanisms of control of chaos
is the proportional feedback method (PF), which,
roughly speaking, consists in a periodic reduction
of the state variable, proportional to the size of this
variable. There are many situations where this con-
trol makes sense; for example, in models of exploited
populations (by harvesting or fishing), this means that
the harvesting effort is proportional to the population
size (referred to as constant effort harvesting [6]). The
same strategy is usually applied to control of pests;
see, e.g., [14, 17] and references therein.

Although both discrete and continuous mathemati-
cal models involving constant effort harvesting have a
long tradition [3, 6, 12, 16], the study of this mech-
anism as a control method (that is, to avoid unde-
sired chaotic behavior) is relatively recent. Güémez
and Matías [8] considered the one-dimensional dis-
crete equation

xn+1 = f (xn), (1)

with the quadratic (f (x) = rx(1 − x)) and the Ricker
(f (x) = xer(1−x)) maps, and applied the PF method
in the form

xn+1 =
{

f (xn), if n �= mk,

f ((1 − μ)xn), if n = mk, k ∈ Z
+,

(2)

where m is a positive integer; that is, the control is
applied in the form of pulses after m iterations of f .
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The parameter μ represents the strength of the feed-
back. Reference [8] contains some numerical experi-
ments that reveal that this method has the potential to
drive a chaotic system (1) into a T -periodic regime af-
ter control (2), where T is a multiple of m. Solé et al.
[15] provided more comments on the PF method, re-
lated to its applicability in the control of populations.

For m = 1, the controlled system (2) reduces to the
difference equation

xn+1 = f
(
(1 − μ)xn

)
. (3)

When (1) is a model of population dynamics, func-
tion f is the so-called stock-recruitment function.
Thus, (3) means that a portion μxn of the population
is removed each year prior to reproduction. This is
a common hypothesis in fishery models and control
of plagues [1, 17]. Recently, model (3) has attracted
the attention of ecologists because it can produce such
counterintuitive effects as a population increasing in
response to an increase in its per capita mortality
rate [1, 10, 14, 17]. Seno [14] identified the range of
μ values for which this paradoxical effect occurs for
some typical population models. A related result, valid
for a general family of maps f commonly used in the
formulation of model (1), was given in [10]. Moreover,
in paper [10], it was rigorously proved that the control
scheme (3) allows us to stabilize chaotic dynamics to-
wards a globally stable equilibrium, providing the ex-
act range of μ values for which this stabilization is
achieved. This is an important item which had not been
addressed in previous papers such as [8, 15].

However, we can notice some shortcomings of the
approach in [10]:

1. It is assumed that the control function is applied at
each step, which is sometimes not feasible.

2. Keeping the system in the strict vicinity of the only
positive equilibrium does not reflect the most typ-
ical types of stable behavior in nature, when sta-
ble oscillations more frequently occur than conver-
gence to the equilibrium.

3. There are significant restrictions on the smoothness
and the shape of the map, for example, the negativ-
ity of the Schwarzian derivative.

The aim of this paper is twofold. On the one hand,
we are able to generalize the results of [10] by loos-
ening the requirements on the production function f

which still makes it possible to determine the range
of the controlling parameter valid for stabilization. On

the other hand, we provide an analogous result for
the general control scheme (2), in which the control
is implemented once in several steps, in the form of
pulses. We notice that, contrary to (3), (2) with m > 1
is nonautonomous, and this fact makes its study much
more difficult.

We emphasize that, for m > 1, the result of PF con-
trol is an attracting cycle of period m, where m is
the frequency of control intervention; this feature is
in accordance with the numerical observations in [8].
Our main result not only provides an analytical proof
of the fact that the control scheme (2) leads sys-
tem (1) to a stable periodic orbit, but also guarantees
its global stability. Hence, our results accomplish two
important aims of the mechanisms of control and tar-
geting, namely, suppression of any possible chaotic
behavior and making the basin of attraction of the tar-
geted trajectory as large as possible (for more discus-
sions on the problem of targeting, see Bocaletti et al.
[5, Sect. 4]).

We organize this note as follows: in the second sec-
tion, we state and prove the main results; in Sect. 3
we discuss the main features of our approach, com-
pare it with previous results for some usual population
models, provide numerical simulations to illustrate our
results, and state some open problems.

2 Global stabilization

In this section we state and prove our main results for
the global stabilization of periodic solutions using the
control PF scheme (2). First, we list the hypotheses we
assume for map f (it will be explicitly stated which of
them are imposed) and discuss their biological mean-
ing.

(A1) f : [0,∞) → [0,∞) is continuous, f (0) = 0,
and f (x) > 0 for all x > 0.

(A2) There exists a point c > 0 such that f is twice
continuously differentiable on [0, c], f ′(0) > 1,
f ′(x) > 0 and f ′′(x) < 0 for all x ∈ (0, c).

(A3) The following inequality holds:

f (x)

x
<

f (c)

c
, ∀x > c. (4)

Condition (A1) is almost always required in dis-
crete population models. Assumption (A2) assumes
a twice differentiable curve which is increasing, con-
cave down, and lies above y = x for x small enough.
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This is a typical feature of compensation models
[6, Sect. 1.2], for which the production function f

is written as f (x) = xF(x), where F(0) > 1 and
F is decreasing and nonnegative for small x. Thus,
f ′(0) = F(0) > 1, and f ′′(0) = 2F ′(0) < 0. For uni-
modal functions, it is natural to choose a maximum
point as c; however, any smaller positive point will
also do.

Condition (A3) is a technical assumption meaning
that for x > c all points of the graph y = f (x) lie un-
der the line connecting the origin with (c, f (c)). This
means that after some point the stock-recruitment ra-
tio can still increase, but it does not exceed the value
at this point.

Remark 1 Although the domain of f is assumed to
be [0,∞) in hypothesis (A1) because it is the usual
condition in biological models, it is easy to check that
all the results given in this paper hold if we consider
a continuous function f : [0, b] → [0, b], where b ∈ R

and 0 < c ≤ b.

Remark 2 We notice that assumption (A2) implies that
function

h(x) = f (x)

x

is twice differentiable on (0, c), and h′(x) < 0 for all
x ∈ (0, c). Hence, if (4) is satisfied for a certain c > 0
then it also holds for any c̃ such that 0 < c̃ < c, since

f (c̃)

c̃
= h(c̃) > h(x) = f (x)

x
, ∀x ∈ (c̃, c],

and

f (c̃)

c̃
>

f (c)

c
>

f (x)

x
, ∀x > c.

We need the following simple auxiliary statement
in the proof of our main results. As usual, for a map
g : I → I, where I is a real interval, we denote g2 =
g ◦ g, and gn = g ◦ gn−1 for all integer n ≥ 3.

Lemma 1 Let g : [0,∞) → [0,∞) be a continuous
function such that g(0) = 0 and

(H) g has a unique fixed point K such that x < g(x) <

K for all x ∈ (0,K), and 0 < g(x) < x for all
x > K .

Then K is globally attracting for all positive solutions
of the equation

xn+1 = g(xn); (5)

that is, every solution {xn} of (5) with x0 > 0 converges
to K :

lim
n→∞xn = lim

n→∞gn(x0) = K. (6)

Proof If for some j ∈ N we have 0 < xj ≤ K then
by (H) all xn, n ≥ j , also satisfy 0 < xn ≤ K . More-
over, since g(x) > x for 0 < x < K , it follows that
the sequence {xn}∞n=j is nondecreasing and thus has a
limit d , 0 < d ≤ K . Taking limits in both sides of (5)
we obtain d = g(d), as g is continuous. By (H), K is
the only positive equilibrium of g, so d = K .

Assume now that xn > K for any n ∈ N. Then
by (H) the sequence {xn} is nonincreasing; again, it
has a limit d ≥ K , which by continuity of g is a fixed
point, and therefore (6) holds. �

Now we are in a position to prove our main re-
sults. We begin with the case m = 1, that is, the control
scheme (3).

Theorem 1 Assume that f satisfies (A1), (A2) and
(A3). Then there exist μ1,μ2 such that 0 < μ1 < μ2 <

1 and (3) has a globally attracting positive equilibrium
for all μ ∈ [μ1,μ2).

Proof Throughout the proof, we will denote γ = 1 − μ,
so (3) writes xn+1 = f (γ xn).

First, let us choose γ = c/f (c) and define g(x) =
f (γ x). We claim that the following statements are
true:

(i) f (c) is a fixed point of g;
(ii) g(x) < f (c) for 0 < x < f (c);

(iii) g(x) > x for x < f (c) and g(x) < x for x > f (c).

Then, we will be able to apply Lemma 1 to estab-
lish the global attraction of the unique positive equi-
librium f (c) of (3).

(i) Since

g(f (c)) = f

(
c

f (c)
f (c)

)
= f (c),

f (c) is a fixed point of g.
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(ii) Since f is monotone increasing on [0, c], then g

is increasing on [0, f (c)], which implies

g(x) < g(f (c)) = f (c) for any x ∈ (0, f (c)).

(iii) By Remark 2, h(x) = f (x)/x is decreasing on
(0, c); in particular,

f (x) >
f (c)

c
x for any x ∈ (0, c).

If x < f (c) then cx/f (c) ∈ (0, c), and therefore

g(x) = f

(
cx

f (c)

)
>

f (c)

c

cx

f (c)
= x.

Further, for x > f (c) we have cx/f (c) > c, so by (4),

g(x) = f

(
cx

f (c)

)
<

cx

f (c)

f (c)

c
= x.

By Lemma 1, the point f (c) attracts all positive solu-
tions of the controlled equation (3).

Next, in view of Remark 2, the result holds for any
γ̃ = c̃/f (c̃) with 0 < c̃ < c. Since

lim
x→0

f (x)

x
= f ′(0),

we can ensure that (3) has a globally attracting equi-
librium for all γ ∈ (1/f ′(0), c/f (c)], that is to say, for
any μ ∈ [μ1,μ2), where

μ1 := 1 − c

f (c)
, μ2 := 1 − 1

f ′(0)
. (7)

�

Next we prove a global stability result for the gen-
eral equation (3) with m > 1. We need the following
key auxiliary result.

Lemma 2 Assume that f satisfies (A1), (A2) and
(A3) for a given c = c1 > 0. Then, for every m ≥
2, f m satisfies (A1), (A2) and (A3) for c = cm =
f −m+1(c1).

Proof First, we notice that, if (A2) holds, then f is
monotone increasing on [0, c] and we can define f −1 :
[0, f (c)] → [0, c], and f −k = (f −1)k , ∀k > 1. Denot-
ing ck = f −k+1(c), we have the following inequali-
ties:

cm < cm−1 < · · · < c2 < c1 = c.

It is obvious that f m satisfies (A1) if (A1) holds for f .
Next, the proof of (A2) for f m follows easily from
basic derivation rules. So, we omit it and proceed with
(A3). We have to prove that, for all k ≥ 1,

f k(x)

x
<

f k(ck)

ck

, ∀x > ck = f −k+1(c). (8)

We use induction in k. Since (8) holds for k = 1, let us
assume that it is true for k = 1,2, . . . ,m − 1, and we
demonstrate that it also holds for k = m.

We claim that

f m−1(x)

x
<

f m−1(cm)

cm

, ∀x > cm. (9)

Indeed, if cm < x ≤ cm−1, then (9) is a consequence
of the fact that condition (A2) holds for f m−1 on
[0, cm−1]. Next, if x > cm−1 = f −m+2(c), we get
from the induction hypothesis that

f m−1(x)

x
<

f m−1(cm−1)

cm−1
<

f m−1(cm)

cm

.

Next we consider two cases:

Case 1. f m−1(x) ≥ c. Then, by (A2),

f m(x)

f m−1(x)
≤ f (c)

c
. (10)

From (9) and (10), it follows that

f m(x)

x
= f m(x)

f m−1(x)

f m−1(x)

x
<

f (c)

c

f m−1(cm)

cm

= f (c)

cm

= f m(cm)

cm

.

Case 2. f m−1(x) < c. Then, by (A2), f m(x) < f (c),
and therefore

f m(x)

x
<

f (c)

x
<

f (c)

cm

, ∀x > cm.

This ends the proof. �

Now we state and prove an analogous result to The-
orem 1 for the general scheme (2).

Theorem 2 Assume that f satisfies (A1), (A2), and
(A3). Then there exist μ1(m),μ2(m) such that 0 <

μ1(m) < μ2(m) < 1 and (2) has a globally attracting
m-cycle for all μ ∈ [μ1(m),μ2(m)).
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Proof As before, we denote γ = 1 − μ. We choose

γ = cm

f m(cm)
= f −m+1(c)

f (c)
,

and define the continuous function g(x) = f m(γ x).
Notice that if {xn} is a solution of (2) and we define

g(x) = f m(γ x), then

xm+1 = f (γ xm),

xm+2 = f (xm+1) = f 2(γ xm),

...

x2m = f m(γ xm) = g(xm),

and, in general,

xmk = gk(xm),

for all integer k ≥ 1.

Lemma 2 ensures that f m satisfies (A1), (A2),
and (A3) with cm = f −m+1(c) instead of c. Thus, if
x0 > 0, Theorem 1 applies to prove that there exists

lim
k→∞xmk = lim

k→∞gk(xm) = f m(cm) = f (c).

By the definition of (2) and the continuity of f , we
have

lim
k→∞xmk+1 = f

(
γf (c)

) = f (cm) = f −m+2(c),

and, for p = 2,3, . . . ,m − 1:

lim
k→∞xmk+p = f p

(
f −m+2(c)

) = f p−m+2(c).

Thus, {xn} converges to the m-cycle

Γ = {
f −m+2(c), f −m+3(c), . . . , c, f (c)

}
. (11)

As in the proof of Theorem 1, it follows that the
range of μ values for which the global stabilization is
achieved is [μ1(m),μ2(m)), where

μ1(m) := 1 − cm

f m(cm)
= 1 − f −m+1(c)

f (c)
;

μ2(m) := 1 − 1

(f m)′(0)
= 1 − 1

(f ′(0))m
. �

From all requirements of Theorems 1 and 2, prob-
ably (A3) can be the most difficult to verify. We finish
this section with a result that provides simple sufficient
conditions to ensure that (A3) holds.

Proposition 1 Assume that f satisfies (A1), (A2), and
(A4) f has a positive fixed point K such that f (x) > x

for 0 < x < K and f (x) < x for x > K . Assume also
that the following condition holds for the point c in
(A2):

c ∈ [0,K] and f (c) = max
{
f (x) : x ∈ [0,K]}.

(12)

Then, f fulfills (A3).

Proof Let us notice that f (c) ≥ c and, therefore,

f (c)

c
≥ 1.

We distinguish between two cases. If x > K then, it
follows from (A4) that f (x) < x, and therefore

f (x)

x
< 1 ≤ f (c)

c
.

Assume now that c < x ≤ K . Then, by assump-
tion (12), f (x) ≤ f (c), and therefore

f (x)

x
≤ f (c)

x
<

f (c)

c
.

Thus, inequality f (x)/x < f (c)/c holds for all x > c,
as we wanted to prove. �

We notice that Assumption (A4) is very common in
discrete population models (see [7] and [16, Chap. 9]).

3 Discussion and numerical results

For m = 1, Theorem 1 establishes the global stability
of the fixed point in model (3), complementing The-
orem 1 in [10], where the assumptions of unimodal-
ity and negative Schwarzian derivative are required
for f . Such a class of maps includes the Ricker func-
tion f (x) = xer(1−x), with r > 0, and the generalized
Beverton–Holt map f (x) = ax/(1 + xb), with a > 1,
b ≥ 2.

It is obvious that the conditions of Proposition 1
hold for the family of maps considered in [10], so
Theorem 1 applies. In this case, the main result in
[10] is sharper because it provides a larger range of
μ values for which global stabilization is achieved us-
ing (3). Actually, Theorem 1 establishes the μ values
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for which convergence to a globally stable equilibrium
with the PF control scheme (3) is eventually mono-
tone, that is, every positive solution x = {xn} of (3)
converges to the equilibrium, and this convergence is
monotone for all n ≥ k, for an integer k = k(x) ≥ 0
(see the proof of Lemma 1).

However, we notice that the scope of Theorem 1 is
much more general, since many other maps fall within
this setting; actually, we even assume neither existence
nor uniqueness of fixed points of the production func-
tion f . For instance, the generalization f (x) = xeq(x)

of the Ricker model, where q(x) is a function satisfy-
ing q(0) > 0 and q ′(0) < 0, can meet the assumptions
of Theorem 1 even if q does not have positive zeros
(so f does not have a positive equilibrium), or it has
more than one zero (so f has several positive equilib-
ria). For example, choose q(x) = e−x ; then (1) with
f (x) = xeq(x) does not have any positive equilibria.
However, by Theorem 1, the control scheme (3) has a
globally stable equilibrium for all μ ∈ (0.169,0.632).

Other known stock-recruitment functions f used in
models of population dynamics for which the result
in [10] does not apply are:

1. The family of bimodal maps f (x) = αx + βxe−x

(where 0 < α < 1, β > 0) suggested in [6, 16],
which is a further generalization of the Ricker
model allowing a probability α of adult survivor-
ship after reproduction;

2. The generalization of the logistic map proposed by
Beddington and May [2]:

f (x) = x
[
1 + q

(
1 − xz

)]
+,

where q > 0, z > 0, [x]+ = max{x,0}. This map is
unimodal but does not have a negative Schwarzian
derivative for z < 1.

It is easy to check that these maps satisfy the condi-
tions of Proposition 1, so both Theorems 1 and 2 ap-
ply.

It is worth emphasizing that if f meets the con-
ditions of Proposition 1, then the PF scheme (3) has
some additional interesting features. On the one hand,
from the point of view of targeting, it gives the pos-
sibility to stabilize the size of the population into any
desired positive number below the maximum possible
value of the production function on [0,K]; in this di-
rection, this method is better than other techniques of
control of chaos (see [10] and references therein). On
the other hand, when the attained equilibrium is a local

maximum value f (c), the convergence of the method
is superstable, since g′(f (c)) = γf ′(c) = 0.

But the main contribution of this note is the state-
ment and rigorous proof of a result (Theorem 2) which
ensures that when the proportional feedback method
is applied in the form of pulses (as it was introduced
in [8]), it is still possible to get a global stabilization
of all positive solutions. If the frequency of pulses is
every m seasons, then the solutions are stabilized into
an m-cycle. Moreover, we found easily verifiable con-
ditions (see Proposition 1), which are met by a gen-
eral family of maps usually employed in population
dynamics and allow us to determine a range of val-
ues [μ1(m),μ2(m)) of μ for which the m-cycle of (2)
is globally attracting. If condition (12) holds, then the
point c is often a nondegenerated local maximum. If
this is the case and we consider (2) with

μ = μ1(m) = 1 − f −m+1(c)

f (c)
,

then the attracting periodic orbit contains f (c) and is
superstable, that is, its multiplier is 0. Indeed, if μ =
μ1(m) and g(x) = f m((1 − μ)x), then, since f ′(c) =
0,

g′(f (c)
) = (1 − μ)(f m)′

(
(1 − μ)f (c)

)
= (1 − μ)(f m)′(cm)

= (1 − μ)
(
f ◦ f m−1)′

(cm)

= (1 − μ)f ′(f m−1(cm)
)(

f m−1)′
(cm)

= (1 − μ)f ′(c)
(
f m−1)′

(cm) = 0.

We notice that μ1(m) is an increasing function
of m. This means that, to stabilize the solutions of (1)
about a globally stable m-periodic orbit using the con-
trol scheme (2), the removal rate μ must be larger as
the time between pulses increases.

We emphasize that the PF method can be imple-
mented as a strategy for suppressing chaos in popula-
tion models, and even to enhance the average popula-
tion stock. However, as usual some words of caution
are in order since, unless the stock-recruitment rela-
tionship is very sharply known (which is in general
difficult), this strategy is dangerous because the dif-
ference between the culling rates μ1(m) and μ2(m) is
small, and the population is driven to extinction if we
apply a harvesting rate greater than μ2(m).
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Table 1 Steps of the algorithm for stabilization of a 3-periodic
orbit using proportional feedback control with pulses

Step Action

1 Find numerically the critical point c

2 Determine the point c3 = f −2(c), c3 ∈ (0, c)

3 Choose μ∗ ∈ [1 − c3/f (c),1 − 1/(f ′(0))3)

4 Multiply by (1 − μ∗) every third iteration of (13)

Finally, in order to illustrate our results, we exam-
ine a case of study and give some numerical simula-
tions for it.

Consider the following generalized Beverton–Holt
equation (also referred to as Maynard Smith model
[16]):

xn+1 = 2.5xn

1 + x5
n

, (13)

whose dynamics is chaotic. We implement a PF
method by pulses every third period, that is,

xn+1 =
{

f (xn), if n �= 3k,

f ((1 − μ)xn), if n = 3k, k ∈ Z
+,

(14)

where f (x) = 2.5x/(1 + x5).
Function f is unimodal with a unique critical point

c ≈ 0.758, and f (c) ≈ 1.516. We can find numer-
ically the points c2 = f −1(c) ≈ 0.304 ∈ (0, c) and
c3 = f −2(c) ≈ 0.121 ∈ (0, c).

Since f meets all conditions in the statement of
Proposition 1, Theorem 2 ensures that the control
scheme (14) stabilizes system (13) into a globally at-
tracting cycle of prime period 3. If we choose

μ = μ1 = 1 − c3

f (c)
= 1 − f −2(c)

f (c)
≈ 0.91979, (15)

then the cycle is defined by

Γ = {
f −1(c), c, f (c)

} = {0.304,0.758,1.516}. (16)

Table 1 summarizes the steps of the algorithm used
for the stabilization of the chaotic equation (13).

Starting at any x0 > 0, the procedure explained in
Table 1 produces a sequence converging to the glob-
ally attracting 3-cycle Γ .

In Fig. 1 we plot a cobweb diagram showing a
chaotic orbit of the uncontrolled equation (13), and the
globally attracting 3-cycle (represented by the dotted
lines) for the controlled system (14).

Fig. 1 Chaotic orbit of the uncontrolled equation (13), and the
globally attracting 3-cycle (dotted lines) for the controlled sys-
tem (14)

In Fig. 2(a) we plot a time series with 50 iterations
of the chaotic system (13) starting at x0 = 1.4, and the
solution of the controlled system (14) with μ = μ1 is
displayed in Fig. 2(b).

The range of μ values for which Theorem 2 ensures
a globally attracting 3-cycle of (14) is [μ1,μ2), where
μ1 is given in (15), and

μ2 = 1 − 1

(f ′(0))3
= 1 −

(
2

5

)3

= 0.936.

At μ = μ2, (14) has a transcritical bifurcation, af-
ter which all solutions converge to 0. In Fig. 3 we
represent the bifurcation diagram of (14), for μ ∈
(0.85,0.94). We notice that the 3-cycle arises af-
ter a period-halving bifurcation at μ = μ0 ≈ 0.891,
where g(x) = f 3((1 − μ)x) has a fixed point x̄ with
g′(x̄) = −1. This allows to enlarge the interval where
there is an asymptotically stable 3-cycle for (15) to
(μ0,μ2); actually, in this example, it is not difficult
to use the properties of the Schwarzian derivative to
prove that the cycle is globally attracting for all μ ∈
(μ0,μ2). However, this can be a very difficult task if
f is not a unimodal map with a negative Schwarzian
derivative.

Finally, let us mention some open problems and di-
rections for future research.

1. In this note and in many previous papers, for m =
1 stabilization was understood as the method of
control leading to a stable equilibrium, and for
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Fig. 2 Time series for (a) the uncontrolled equation (13), and (b) the controlled system (14), showing convergence to the attracting
cycle of period 3 for μ = 0.92

Fig. 3 Bifurcation diagram of (14), for μ ∈ (0.85,0.94). There
is a period-halving bifurcation at μ = μ0. The points μ1 and μ2
are also indicated (see the text)

m > 1—where pulse controls are applied every m

steps—to a stable m-cycle.
When the proportional feedback control cannot

drive the system to a stable equilibrium, it would be
interesting to study if a stable cycle can still be at-
tained (for m > 0, a stable cycle of minimal period
k > m).

2. Investigate the set of PF controls which do not lead
necessarily to stable equilibria or cycles but keep
the population within certain bounds 0 ≤ α ≤ xn ≤
M . Here, for populations with a single positive
equilibrium K > 0, the positive constant α < K

can be chosen large enough for harvesting to avoid
population extinction, and either M > K or, for
pest control, M < K should be small enough.

3. For the general model (1), with f satisfying (A1),
try to loosen the necessary conditions for global
stabilization using other types of control, such as

the predictive control considered in [11] or the con-
stant feedback method addressed in [9]. For very
high reproduction rates, a positive constant pertur-
bation can lead to a stable cycle, see [4] and refer-
ences therein.

4. Everywhere above, we assumed a proportional re-
duction at each or some selected steps. For systems
with the Allee effect, enrichment can be required
as well. Compared to [10], in the present paper we
considered more general dynamical systems. How-
ever, it is still assumed that population grows for
small values of xn. The consideration of control and
stabilization for systems with the Allee effect [13]
is another interesting direction for future research.
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