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Abstract. In this paper, several sufficient conditions are established
for the global stability of the positive steady state of a scalar functional
differential equation x′ = −Lxt + f(xt), x ≥ 0 (1). The basic idea of
the paper is to reduce an infinite dimensional system generated by (1) in
some “friendly” spaces to the study of associated one-dimensional maps.
In this way, we improve earlier results concerning not only the scalar
Lasota-Wazewska and Mackey-Glass equations with infinite distributed
delay but also the multidimensional Goodwin oscillator with infinite
delay.

1. Introduction

In this paper, we study the attractivity properties of a unique positive
equilibrium of functional differential equations like

x′(t) = −δx(t) + f(xt), x ≥ 0, (1.1)

where f is a nonlinear functional defined on some functional space C+
I and

δ > 0. Taking f(xt) = f(x(t − h)), we can obtain from (1.1), correspond-
ingly, Lasota-Wazewska (f(x) = p exp(−αx), p, α > 0), Nicholson’s (f(x) =
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px exp(−αx), p, α > 0) and Mackey-Glass (f(x) = αxm(1 + xn)−1, m =
0, 1, n > 0, α > 0) equations. Precisely these particular systems have moti-
vated our study. The positivity of the variable x in (1.1) could be explained
by multiple applications that these equations have in biological modeling
(see also Section 4). The global attractivity in Eq. (1.1) with finite delay
was widely studied in various works (see, e.g. [5, 7, 8, 15, 22] for references).
Also, the last years were marked by important advances in studies of Lotka-
Volterra systems with infinite delay which are dynamically similar to (1.1)
(see [16]). However, the case of continuous delay distributed over an infinite
interval in the mentioned Mackey-Glass type equations was considered only
in a few works. In this paper, we propose to reduce the infinite dimensional
system generated by Eq. (1.1) in some “friendly” space C+

I (allowing con-
sideration of infinite delay) to the study of some associated one-dimensional
maps. Moreover, our methods can be applied to some multidimensional
differential equations, including the Goodwin oscillator [14, 22, 23]. As an
application, we improve earlier results from [6, 14, 17, 21, 23].

2. Preliminaries

In the paper, we consider the Banach space (C([−τ, 0]), | • |0) endowed with
the supremum norm. It is customary to write C instead of C([−τ, 0]), and
we will follow this tradition.

2.1. Functional spaces. In the case of the finite delay in (1.1), we will
write I = [−τ, 0], CI = C = C([−τ, 0]) and

C+
I = C+([−τ, 0]) = {φ ∈ C([−τ, 0]) : φ ≥ 0}.

Otherwise, when delay is infinite, we set I = (−∞, 0] and CI = UCg, where
UCg stands for the Banach space (UCg, |•|g) of fading memory type (see the
definition below and [2, 10, 13, 15]). The corresponding cone of nonnegative
functions will be denoted as C+

I = UC+
g .

Definition 2.1. Let
(g1) g : (−∞, 0] → [1,∞), g(0) = 1 be a continuous nonincreasing func-

tion and
(g2) g(s+ u)/g(s)→ 1 uniformly on (−∞, 0] as u→ 0−, and
(g3) g(s)→ +∞ as s→ −∞.

Then UCg denote the space of all continuous functions φ : (−∞, 0] → R
such that φ/g is bounded and uniformly continuous on (−∞, 0]. This UCg
equipped with the norm |φ|g = sups≤0[|φ(s)|/g(s)] is a Banach space.
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It is well known (see [2, 10, 13, 15] and also [16, 23]) that standard unique-
ness, continuation and continuous dependence theorems hold for Eq. (1.1) in
the space UCg. Moreover, the bounded solutions to Eq. (1.1) corresponding
to initial values φ ∈ BC (that is, bounded and continuous) have precompact
orbits in UCg (e.g., see [15, Section 2.7]).

2.2. Nonlinearity. We will assume that the functional f : C+
I → R+

is bounded continuous and locally Lipschitzian, so that the existence and
uniqueness of solution x(φ)(t) for the initial value problem x(s) = φ(s), s ∈
I, φ ∈ C+

I associated to Eq. (1.1) is guaranteed. The relation f∗(m) =
f(m(t)), where m(t) ≡ m ∈ R+, defines a continuous bounded map f∗ :
R+ → R+. By abuse of notation, we shall use the same letter f for f∗. We
will suppose that f(+∞) = 0 and that the equation

x = δ−1f(x)
def
= h(x)

has at most one positive solution x2. This means that there exist at most
two constant nonnegative solutions x1(t) ≡ 0 and x2(t) ≡ x2 > 0 to (1.1).
Moreover, we will consider only functionals f satisfying the following mono-
tonicity property:

m = inf
I
ψ(t) ≤ sup

I
ψ(t) = M implies f(ψ) ∈ f([m,M ]). (2.1)

Finally, we list several additional hypotheses on h which will be assumed
only whenever this is explicitly indicated:

(H1) h is a strictly decreasing function.
(H2) h−1(0) = 0, lim infx→0+

h(x)
x > 1 and h : R+ → R+ has only one

local extremum x∗ (maximum).
(H3) h(x) < x for every x > 0.

2.3. Global attractivity. Following [12, Section 3.4], we give the defini-
tion of global attractivity (which is stronger than used in the population
dynamics, cf. with [21, 26]):

Definition 2.2. Let X be a metric space and T = R+ or Z+. The semi-
dynamical system Φtx : T × X → X has a global attractor A if A is a
maximal compact invariant set which attracts each bounded set B ⊂ X
(thus Φtx→ A as t→ +∞ for every x ∈ X).

We will study the existence of a global attractor in Eq. (1.1) using some
associated one-dimensional maps. The next proposition, which can be de-
duced from the Singer’s results [3, 24], will be very important in the sequel.
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Remember that the Schwarz derivative (Sh)(x) of a real smooth function h
at the point x is defined as

(Sh)(x) = h′′′(x)(h′(x))−1 − (3/2)
(
h′′(x)(h′(x))−1

)2
.

Proposition 2.3. Assume that the function h : [a, b] → [a, b], h ∈ C3[a, b],
is either strictly decreasing or it has only one critical point x∗ (maximum)
in [a, b]. If a unique fixed point x2 ∈ [a, b] of h is locally asymptotically stable
and the Schwarzian derivative (Sh)(x) < 0 for all x 6= x∗, then x2 is a global
attractor of h.

We shall use also the following statement (e.g., see [5] for the proof):

Proposition 2.4. Let h : [a, b]→ [a, b], h ∈ C[a, b] be such that the equation
h2(x) = x has a unique solution x = x2. Then x2 is a global attractor of the
discrete dynamical system xn+1 = h(xn).

As an immediate consequence of the previous proposition, we have the
following

Corollary 2.5. Let h : [a, b] → [a, b] be a continuous function such that
hn(x)→ x2 as n→∞ for every x ∈ [a, b]. Then hn[a, b]→ x2 as n→∞.

3. Attractivity.

In this section, for Eq. (1.1), we establish global stability and uniform per-
sistence results. Here and subsequently, we will use the symbol x(φ)(t) to
denote the solution of Eq. (1.1) satisfying the initial condition x(φ)(s) =
φ(s), s ∈ I, φ ∈ C+

I . By definition, (xt(ψ))(s) = x(ψ)(t + s), s ∈ I. Next,
for simplicity of notation and up to Section 5, we will write v(t) instead of
exp(−δt). We begin with the following statement:

Lemma 3.1. The map F : R+×C+
I → C+

I , F
tψ = xt(ψ) defines a continu-

ous semiflow. Next, for every bounded and continuous φ ∈ C+
I , the ω−limit

set ω(φ) is nonempty, connected, invariant and compact. If x(t) : R → R+

is a bounded solution of (1.1), then

x(t) =
∫ t

−∞
v(t− s)f(xs)ds. (3.1)

Proof. Consider I = (−∞, 0], the case I = [−τ, 0] being analogous and
simpler. As we have mentioned, under assumptions imposed on right-hand
side of (1.1) and functional spaces, F t : C+

I → C+
I defines a local continuous
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semiflow. Let x(φ)(t), φ ∈ C+
I be a solution of (1.1) defined on the maximal

interval of existence [0, κ). By the variation of constants formula,

x(φ)(t) = v(t)φ(0) +
∫ t

0
v(t− s)f(xs(φ))ds, t ∈ [0, κ). (3.2)

We have

0 ≤
∫ t

0
v(t− s)f(xs(φ))ds ≤ δ−1 sup

C+
I

f,

and therefore 0 ≤ x(φ)(t) ≤ φ(0) + δ−1 sup f for all t ∈ [0, κ). Now, since
UCg is an admissible space (see e.g. [9, Definition 2.1]), there exists K > 0
such that

|xt(φ)|g ≤ K
(

sup
s∈[0,κ)

|x(φ)(s)|+ |φ|g
)
, t ∈ [0, κ) .

Hence, since |xt(φ)|g is bounded over [0, κ) and since the functional −δφ(0)+
f(φ) takes closed bounded sets of UC+

g into bounded sets, we can apply
Continuation Theorem 2.4 from [13] to conclude that κ = +∞. This means
that F tψ maps R+ ×C+

I into C+
I . Moreover, each bounded orbit {F tφ, t ≥

0}, φ ∈ BC+ is precompact in C+
I (see Lemma 7.1, p. 47 from [15]).

Therefore the ω−limit set ω(φ) of φ ∈ BC+ is nonempty, compact, connected
and invariant (there is a complete orbit Γ(ξ) ∈ ω(φ) through every ξ ∈ ω(φ)).
Additionally, ω(φ) attracts φ ([10, Theorem 3.1]).

Finally, the equality (3.1) is immediate since δ > 0 and the scalar contin-
uous function f(xt), t ∈ R, is bounded. ¤
Remark 3.2. Suppose that x is a complete (that is defined over R) bounded
nonnegative solution to Eq. (1.1) and x(s) = 0 at some point s ∈ R. Then
the positivity of v(t) and (3.1) imply that f(xu) = 0 for all u < s. Hence,
again by (3.1), x(t) = 0 for all t < s that gives f(0) = 0 and, finally, x(t) ≡ 0
by the uniqueness theorem.

Using Lemma 3.1 we can easily prove the following key result:

Lemma 3.3. If x : R → R+, x 6≡ 0, is a complete bounded solution of Eq.
(1.1) with m = inft∈R x(t), M = supt∈R x(t), then

[m,M ] ⊂ h([m,M ]) ⊂ h2([m,M ]) ⊂ · · · ⊂ hj([m,M ]) ⊂ · · · (3.3)

Proof. Since m ≤ x(t) ≤ M for all t ∈ R, it follows from (2.1) and (3.1)
that

m = inf
t∈R

x(t) ≥
∫ t

−∞
v(t− s) ( min

y∈[m,M ]
f(y)) ds = min

y∈[m,M ]
h(y);



880 Eduardo Liz, Clotilde Mart́ınez, and Sergei Trofimchuk

M = sup
t∈R

x(t) ≤
∫ t

−∞
v(t− s) ( max

y∈[m,M ]
f(y)) ds = max

y∈[m,M ]
h(y). (3.4)

Hence, [m,M ] ⊂ h([m,M ]), that implies immediately (3.3). ¤

Corollary 3.4. Let (H3) hold. Then ω(φ) = 0 for every bounded and con-
tinuous φ ∈ C+

I .

Proof. Let M = sup
t∈R

x(β)(t) 6= 0, where β ∈ ω(φ). Then (3.3) and (H3)

imply that M = 0, a contradiction. ¤

Let us remember the concept of uniform persistence:

Definition 3.5. Equation (1.1) is said to be uniformly persistent if there
exists a positive number m such that

lim inf
t→∞

x(φ)(t) ≥ m (3.5)

for every solution x(φ)(t), φ ∈ BC+, to (1.1) such that x(φ)(t) 6≡ 0 over R+.

It is immediate to check that Eq. (1.1) is uniformly persistent under
hypothesis (H1). The following result shows that this is also true when (H2)
holds.

Theorem 3.6.

a) If (H2) holds and I = [−τ, 0], then Eq. (1.1) is uniformly persistent.
b) Let I = (−∞, 0] and let π : UC+

g → C+([−τ̃ , 0]) denote the re-
striction operator. If there are τ̃ > 0 and a continuous functional
f̃ : C+([−τ̃ , 0])→ R+ such that f(φ) ≥ f̃(π(φ)) for every φ ∈ UC+

g ,
then (3.5) holds for every x(φ)(t) 6≡ 0, φ ∈ BC+ once the induced
function f̃∗ : R+ → R+, f̃∗(m) = f̃(m), m(t) ≡ m ∈ R+ satisfies
the assumption (H2).

Proof. a) By Lemma 3.1, there exists M > 0 such that M > lim sup
t→∞

x(φ)(t)

for every initial function φ ∈ C+
I . Let d,m > 0 be such that

η = inf
z∈(0,m]

f(z)
z

∫ d

0
v(u)du > 1, min

t∈[m,M ]
f(t) = f(m).

We are going to show that, with this m, the inequality (3.5) is satisfied.
Actually, since x(φ)(t) 6≡ 0 over positive semiaxis, then there is t0 > 0 such
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that x(φ)(t) > 0 for all t ≥ t0. Now, take s > t0 and m1 = m1(s) ≤ m such
that 0 < m1(s) ≤ min

s≤t≤s+d+τ
x(φ)(t). Then

x(φ)(s+ d+ τ) = v(d)x(φ)(s+ τ) +
∫ s+d+τ

s+τ
v(s+ d+ τ − u)f(xu(φ))du

≥ f(m1)
∫ s+τ+d

s+τ
v(s+τ+d−u)du ≥ m1

f(m1)
m1

∫ d

0
v(u)du ≥ ηm1(s) > m1(s).

This implies that x(φ)(t) > m1(s) > 0 for all t > s + d + τ . Indeed,
otherwise there exists a point s1 > s + d + τ such that x(φ)(s1) = m1(s)
and hence there is an interval [s1 − τ − d, s1] such that x(φ) reaches its
minimum in that interval at s1. This leads us to a contradiction using the
previous argument. Moreover, repeating the precedent arguments, we find
that x(φ)(t) ≥ ηm1(s) > 0 for all t > s+ d+ τ .

Now, let L = lim inft→∞ x(φ)(t). By the above discussion L > 0 and we
can indicate r > T such that x(φ)(t) ≥ L(∆ + 1)(2∆)−1 for all t > r. The
above inequalities imply immediately that, in the case L < m, we have the
contradiction x(φ)(t) ≥ L(∆ + 1)(2∆)−1∆ > L for all t > r + d+ τ .

b) When delay is infinite, we can also use the variation of parameters
formula and employ the arguments used in the proof of (a). We need only
to replace τ with τ̃ and use the properties of f̃∗. More precisely, the unique
difference lies in the chain of inequalities proving that x(φ)(s+d+τ) > m1(s),
which should read:

x(φ)(s+ d+ τ̃) = v(d)x(φ)(s+ τ̃) +
∫ s+d+τ̃

s+τ̃
v(s+ d+ τ̃ − u)f(xu(φ))du

≥
∫ s+d+τ̃

s+τ̃
v(s+ d+ τ̃ − u)f̃(π(xu(φ)))du

≥ f̃∗(m1)
∫ s+τ̃+d

s+τ̃
v(s+ τ̃ + d− u)du ≥ m1

f̃∗(m1)
m1

∫ d

0
v(u)du

≥ ηm1(s) > m1(s).

¤
As an easy consequence of Lemmas 3.1 and 3.3 and the previous theorem,
we get

Corollary 3.7. Let (H2) hold, I = [−τ, 0] and K = [α1, β1] 3 x2 be an
invariant globally attracting set of the map h : [a,b]→ [a,b] defined for an
arbitrary small a > 0 and b = maxh(x). Then we can set m = α1 in (3.5).
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As a direct application of Corollary 2.5 and Lemma 3.3, we get

Theorem 3.8. Let Eq. (1.1) be uniformly persistent. We suppose that the
map

h : [a,b]→ [a,b] 3 x2, h(x2) = x2, (3.6)
is well defined for an arbitrary small a > 0, b = maxh(x). If hn(x)→ x2 as
n → ∞ for all x ∈ [a,b], then limt→+∞ x(φ)(t) = x2 for any bounded and
continuous φ ∈ C+

I . Furthermore, in the case of finite delay, the solution
x(t) ≡ x2 of Eq. (1.1) is globally attracting over the phase space C+.

Remark 3.9. The part of this theorem assuming uniform persistence and
well-posedness of (3.6) is satisfied if the assumption (H1) (or (H2) when
delay is finite) holds.

Combining Theorem 3.8 and Proposition 2.3, we obtain the following:

Corollary 3.10. Let either (H1) or (H2) hold. If 2f ′(x)f ′′′(x) < 3(f ′′(x))2

for all x > 0, x 6= x∗ and f ′(x2) > −δ, then the equilibrium x2 of (1.1) is a
global attractor if delay is finite. In the general case, limt→+∞ x(φ)(t) = x2

for any φ ∈ BC+ such that x(φ)(t) 6≡ 0 over [0,+∞).

In the case when delay is finite, we can find even sharper conditions for
the global attractivity. We note again that, if either condition (H1) or (H2)
is satisfied, then Eq. (1.1) is uniformly persistent. Moreover, in this case, for
some a,b > 0 : a ≤x2 ≤ b, the map

ζ
def
= exp(−δτ)x2 +

(1− exp(−δτ))
δ

f : [a,b]→ [a,b], (3.7)

is well defined and also satisfies (H1) or it has only one critical point at
which the global maximum is reached. Obviously, ζ(x2) = x2.

Theorem 3.11. Consider Eq. (1.1) with finite delay τ . Assume that either
hypothesis (H1) or (H2) holds and the map (3.7) is well defined for arbitrary
small a > 0 and b = max ζ(x). If ζn(x)→ x2 as n→∞ for every x ∈ [a,b],
then the equilibrium x2 of Eq. (1.1) is globally attracting.

Proof. Let x(t) = x(φ)(t) be a nonzero trajectory of the uniformly persis-
tent equation (1.1). The limit set ω(φ) is a nonempty invariant and compact
set. Hence, the values m = min

β∈ω(φ)
inf
t∈R

x(β)(t) and M = max
β∈ω(φ)

sup
t∈R

x(β)(t) are

well defined.
We now establish the conditions guaranteeing the equality m = M . It

is clear that these conditions are sufficient for the global attractivity of the
steady state x(t) ≡ x2.
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Since ω(φ) is a compact invariant set, there exist solutions y(t), z(t) to
Eq. (1.1) such that y(0) = M and z(0) = m.

Next we prove the following statement:
Claim: If m < M , then there exist s, s′ ∈ [−τ, 0] such that y(s) = z(s′) = x2.
Proof. First, let us assume that (H1) holds and suppose the case z(0) = m.
It follows easily from (3.3) that m ≤ x2. If z(s) < x2 for all s ∈ [−τ, 0] then

δx2 > δz(0) = f(z0) ≥ f(x2) = δx2,

a contradiction. The case y(0) = M ≥ x2 is analogous.
Now let us assume that (H2) holds. If x2 ≤ x∗, being x∗ the unique

local maximum of f , then it is easy to check that hn(x) → x2 as n → ∞,
for all x > 0 and Theorem 3.8 ensures that x2 is the global attractor of
Eq. (1.1). Hence m = M and therefore we have to consider only the case
x2 > x∗. If y(0) > x2 or z(0) > x2, we can argue as it was done under
assumption (H1) since f is decreasing in the interval [x2,∞). Let us suppose
that z(0) = m < x2 and z(s) ∈ [m,x2] for all s ∈ [−τ, 0]. Using condition
(2.1) we have that m = h(z0) ∈ h([m,x2]). A simple graphical analysis of h
shows that this is impossible unless m = x2. Finally, if y(0) = M < x2, we
can use Lemma 3.3 to obtain again that m ∈ h([m,M ]) ⊂ h([m,x2]). This
concludes the proof of the claim. Now,

M = y(0) = exp(δs)x2 +
∫ 0

s
exp(δu)f(yu)du .

Taking into account that the function wc : [−τ, 0] → R defined by wc(x) =
eδxx2 + (1− eδx)c is nonincreasing for c ≥ x2 and x2 = h(x2) ≤ max

x∈[m,M ]
h(x),

we have that

M ≤ exp(δs)x2 + (1− exp(δs)) max
x∈[m,M ]

h(x) (3.8)

≤ exp(−δτ)x2 + (1− exp(−δτ)) max
x∈[m,M ]

h(x) .

Analogously,

m = z(0) = exp(δs′)x2 +
∫ 0

s′
exp(δu)f(zu)du,

and we have (now we use that wc(x) is nondecreasing for c ≤ x2):

m ≥ exp(δs′)x2 + (1− exp(δs′)) min
x∈[m,M ]

h(x) (3.9)

≥ exp(−δτ)x2 + (1− exp(−δτ)) min
x∈[m,M ]

h(x).
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Finally, from the estimates (3.8), (3.9) we obtain that

[m,M ] ⊂ ζ([m,M ]) ⊂ ζ2([m,M ]) ⊂ · · · ⊂ ζj([m,M ]) ⊂ · · ·
The statement of Theorem 3.11 is now an immediate consequence of these
relations and Corollary 2.5 ¤

Finally, we have the following application of Proposition 2.3 and Theorem
3.11:

Corollary 3.12. Let (H1) or (H2) be satisfied and the interval I = [−τ, 0]
be finite. If (1 − exp(−δτ))f ′(x2) > −δ and 2f ′(x)f ′′′(x) < 3(f ′′(x))2 for
x > 0, x 6= x∗, then the equilibrium x2 of Eq. (1.1) is a global attractor.

4. Applications

In this section we apply our results to study several physiological and
biochemical models. In particular we consider the model for the survival of
red blood cells in an animal used by Lasota and Wazewska [27], the model
of haematopoiesis (blood cell production) proposed by Mackey and Glass
[19, 20] and the model for biochemical reaction sequences with end product
inhibition known as Goodwin oscillator [18]. We emphasize that in each case
we improve some previous results.

4.1. Lasota-Wazewska model with infinite delay. First, in the cone
UC+

g we consider the system with infinite delay:

x′(t) = −δx(t) +
∫ ∞

0
e−γ(s)x(t−s)dq(s), (4.1)

where q : [0,+∞) → (0,+∞) is a nonconstant nondecreasing function,∫∞
0 dq(s) = Q > 0 and γ : [0,∞) → (0,∞) is a bounded continuous func-

tion with γ0 = supt∈R+ γ(t). We suppose that g : (−∞, 0] → [1,+∞) sat-
isfies the hypotheses (g1-g3) from Definition 2.1 as well as the inequality∫∞

0 g(−s)γ(s)dq(s) < ∞. Such g exists according to [2, Theorem 3.1]. It is
easy to verify that the functional

f(φ) =
∫ ∞

0
e−γ(s)φ(−s)dq(s)

is well defined and Lipschitzian over such UC+
g and satisfies there (H1)

together with (2.1). Finally, applying the results of the previous section, we
get the following propositions:
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Theorem 4.1. Suppose that∫ ∞
0

γ(s)e−γ(s)x2dq(s) < δ (4.2)

where
δx2 =

∫ ∞
0

e−γ(s)x2dq(s) . (4.3)

If, for all x ∈ (0, δ−1
∫∞

0 dq(s)], we have∫ ∞
0

γ3(s)e−γ(s)xdq(s)
∫ ∞

0
γ(s)e−γ(s)xdq(s) <

3
2

(∫ ∞
0

γ2(s)e−γ(s)xdq(s)
)2
,

(4.4)
then x(φ)(t)→ x2 for every solution of (4.1) with initial value φ ∈ BC+.

Proof. By Lemma 3.1, (4.1) defines a continuous semigroup on the phase
space UC+

g and every trajectory with initial value φ ∈ BC+ has a compact
invariant ω-limit set. Moreover, in this case the strictly decreasing function

h(x) =
1
δ

∫ ∞
0

e−γ(s)xdq(s) : [0,+∞)→ (0,+∞)

is well defined and has only one nonnegative fixed point x2. Thus the con-
ditions of Corollary 3.10 are satisfied if the inequalities (4.2) and (4.4) are
verified. ¤

We can replace (4.2) by a condition which does not depend on x2.

Corollary 4.2. The conclusion of Theorem 4.1 remains valid if we replace
(4.2) by the inequality ∫ ∞

0
γ(s)e−γ(s)/γ0dq(s) < δ. (4.5)

Proof. Let us prove that (4.5) implies (4.2). Indeed, for each δ > 0 let us
denote by x2(δ) the unique positive solution of Eq. (4.3) and by z(δ) the
unique positive root of the equation

δz =
∫ ∞

0

γ(s)
γ0

e−γ(s)zdq(s) .

It is immediate to check that z(δ) ≤ x2(δ) for all δ > 0, z is a decreasing
function of δ and z(δ∗) = γ−1

0 for δ∗ =
∫∞

0 γ(s)e−γ(s)/γ0dq(s).
Hence, for all δ > δ∗, we have∫ ∞

0
γ(s)e−γ(s)x2(δ)dq(s) ≤

∫ ∞
0

γ(s)e−γ(τ)z(δ)dq(s) = δγ0z(δ) < δ.
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Remark 4.3. We also note that if γ(s) is close to some positive constant
so that sups≥0 γ(s) < 3

2 infs≥0 γ(s), then (4.4) holds in an evident way.

From Theorem 3.8 we deduce immediately the following result

Theorem 4.4. The conclusion of Theorem 4.1 is valid when h2(x) = x if
and only if x = x2.

Now, for all positive x, setting H(x) = h2(x), we have

H ′(x) =
(1
δ

∫ ∞
0

γ(s)e−γ(s)h(x)dq(s)
)(1

δ

∫ ∞
0

γ(s)e−γ(s)xdq(s)
)

≤ γ0

δ

∫ ∞
0

γ(s)h(x)e−γ(s)h(x)dq(s) ≤ γ0

eδ

∫ ∞
0

dq(s).

Actually, it is not difficult to prove that the strict inequality H ′(x) <
γ0

eδ

∫∞
0 dq(s) holds excepting at most one point. Thus, since H = h2 is

increasing, we obtain the following result as a consequence of Theorem 4.4:

Corollary 4.5. Let

δe ≥ γ0

∫ ∞
0

dq(s). (4.6)

Then x(φ)(t)→ x2 for every solution of (4.1) with initial value φ ∈ BC+.

Remark 4.6. It should be noted that (4.6) implies (4.5). However, in
Theorem 4.1 we have the additional restriction (4.4). In the case γ0 ≡ γ(s)
theorems 4.1 and 4.4 give about the same result.

4.2. Lasota-Wazewska model with finite delay. Considering the equa-
tion

x′(t) = −δx(t) +
∫ τ

0
e−γ(s)x(t−s)dq(s), x ≥ 0, (4.7)

with finite τ > 0, we can obtain new results applying Theorem 3.11. (Here,
γ and q are functions defined on [0, τ ] which have the properties indicated in
the previous subsection). The unique positive equilibrium x2 of this equation
is determined from the equation

x2 =
1
δ

∫ τ

0
e−γ(s)x2dq(s) = h(x2).

Consider the function

ζ(x) = e−δτx2 +
(

1− e−δτ
) 1
δ

∫ τ

0
e−γ(s)xdq(s),
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mapping the interval D = [0, e−δτx2 + (1−e−δτ)
δ

∫ τ
0 dq(s)] into itself. Since

(H1) holds, we have the following easy consequence of Theorem 3.11:

Theorem 4.7. Let x = x2 be the global attractor of the map ζ : D → D.
Then the equilibrium x2 of Eq. (4.7) is global attractor. The same is true
when ζ2 has the unique fixed point x = x2.

Corollary 4.8. Let γ(s) ≡ γ > 0. Then γ(1 − e−δτ )x2 < 1 is sufficient to
guarantee that x2 is the global attractor for Eq. (4.7).

Proof. Indeed, since ζ has negative Schwarzian derivative, we obtain from
Corollary 3.12 that the inequality

γ(1− exp(−δτ))
∫ τ

0
dq(s) exp(−γx2) = δγ(1− e−δτ )x2 < δ

is sufficient for the global attractivity of x2. ¤
Remark 4.9. This condition is sharper than γ(1− e−δτ )x2 < ln 2 of Kulen-
ovic, Ladas and Sficas (see [17, Theorem 1]).

4.3. Mackey-Glass model. Let us consider the following generalization of
the Mackey-Glass equation proposed in [6]:

x′(t) = −δx(t) + α

∫ ∞
0

dq(s)
1 + xn(t− s) , t > 0, x ≥ 0, (4.8)

with α, δ > 0 and n ∈ (0,+∞).
Again we can choose g : (−∞, 0]→ [1,+∞) which satisfies the hypotheses

(g1-g3) indicated in Definition 2.1 as well as the inequality
∫∞

0 g(−s)dq(s) <
∞. Then the functional

f(φ) =
∫ ∞

0

dq(s)
1 + φn(−s)

is Lipschitzian over the corresponding UC+
g . Moreover, assuming

∫∞
0 dq(s) =

1, we obtain that h(x) = α(δ(1 + xn))−1 has a unique positive fixed point
which we will denote as x2. When n > 1, it is easy to check [5, Lemma 1]
that h has negative Schwarzian derivative.

Theorem 4.10. Suppose that either n ∈ (0, 1] or α(n−1)(n+1)/n < δn holds.
Then x(φ)(t)→ x2 for every solution of (4.8) with initial value φ ∈ BC+.

Proof. The case n ∈ (0, 1] is a straightforward consequence of Theorem
3.8 and [5, Lemma 2]. Next, assume that n > 1. Since h has negative
Schwarzian derivative, we need only to check that h′(x2) > −1 and then to
apply Corollary 3.10.
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Let us observe that h(x) = x if and only if xn+1 + x = α/δ. Then it is
easy to prove that the solution x2 > 0 of h(x) = x satisfies h′(x2) > −1 if
and only if

x2 >
α(n− 1)

δn

def
= x1 . (4.9)

Now, let us write F (x) = xn+1 + x − α/δ. We have that F (0) < 0 and x2

is the unique positive solution of F (x) = 0. Thus, if F (x1) < 0 it follows
immediately (4.9) and the proof is done.

Finally, F (x1) < 0 if and only if α(n− 1)(n+1)/n < δn. ¤
Remark 4.11. In [6], the asymptotical stability in (4.8) was proved (by
means of Lyapunov functionals) under considerably more restrictive con-
ditions: α < δn−1, n > 1 and

∫∞
0 sdq(s) < ∞. Moreover, notice the

assumptions of Theorem 4.10 are the best possible delay independent global
stability conditions for Eq. (4.8). Indeed, for a given τ > 0, take q(s) = 0
for s ≤ τ and q(s) = 1 when s > τ . For that q(s), Eq. (4.8) linearized along
x2 has the form x′(t) = −δx(t) + δh′(x2)x(t − τ). Now, it is a well known
fact that the exact delay independent asymptotic stability condition for this
equation with negative h′(x2) has the form h′(x2) ≥ −1. In the other words,
h′(x2) < −1 implies local instability of the steady state x2 for some values
of τ . Finally, a slight modification of the proof of Theorem 4.10 shows that
its statement is still valid if we replace < δn with ≤ δn.

4.4. Goodwin oscillator. In this section we shall give new conditions suf-
ficient for the asymptotical stability in the following Goodwin oscillator with
infinite delay (see, for example, [18] and [22, Chapter 6]):

x′1(t) + a1x1(t) = b1

[
1 +

(∫ ∞
0

k(s)xn(t− s)ds
)µ]−1

x′i(t) + aixi(t) = bi

∫ ∞
0

k(s)xi−1(t− s)ds , i = 2, 3, . . . n,
(4.10)

where ai, bi > 0, xi ≥ 0 for i = 1, 2, . . . , n, k ∈ L1(R+) ∩ C(R+), k ≥ 0 and
µ ∈ N. We will also write k1 = ‖k‖1.

In particular, we improve some results of [14, 23] investigating the as-
ymptotic behavior of solutions to the initial value problem xi(s) = φi(s),
s ∈ (−∞, 0), φi ∈ BC+ ⊂ UC+

g , i = 1, . . . , n, where
∫∞

0 g(−s)k(s)ds <∞.
It is easy to see that the unique positive equilibrium (z1, z2, . . . , zn) of

(4.10) is determined by

h(zn) = zn ; zi−1 = k−1
1

ai
bi
zi , i = 2, 3, . . . n,
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being

h(x) = kn−1
1 (1 + (k1x)µ)−1

n∏
i=1

bi
ai

(4.11)

Let us observe that the functional defined by the right hand side of (4.10),
satisfies a global Lipschitz condition on UC+

g,n = UC+
g (Rn) and Eq. (4.10)

defines a continuous semiflow in this phase space. Moreover, the first equa-
tion in (4.10) has properties similar to Eq. (4.8) and hence it is not difficult
to prove that the component x1(t) of each solution x(t) = (x1(t), . . . , xn(t))
with the initial condition x0 ∈ BC+(Rn) is bounded over R. Then we
can proceed recursively and prove that the remainder components x2(t), . . . ,
xn(t) are also bounded on R. Thus we can conclude that the ω−limit set
ω(φ) for every φ ∈ BC+(Rn) is nonempty and compact (see [15]). Moreover,
if x(t) = (x1(t), . . . , xn(t)) : R→ Rn+ is a complete bounded solution, we can
get the following integral representations (see Lemma 3.1):

x1(t) = b1

∫ t

−∞
e−a1(t−s)f(xns)ds (4.12)

xi(t) = bi

∫ t

−∞
e−ai(t−s)(

∫ ∞
0

k(u)xi−1(s− u)du)ds , i = 2, . . . n, (4.13)

where f is a nonlinear scalar functional defined by (4.10). As before, it
determines a strictly decreasing function f = f∗ : R+ → R+ in the way
indicated in the introductory section.

From the integral equation (4.12) it follows that

sup
t∈R

x1(t) ≤ b1
a1
f(0) = M1 ; inf

t∈R
x1(t) ≥ b1

a1
f(M1) = m1

Next, using equations (4.13), we obtain for each i = 2, . . . , n:

sup
t∈R

xi(t) ≤ k1
bi
ai

sup
t∈R

xi−1(t) = Mi ; inf
t∈R

xi(t) ≥ k1
bi
ai

inf
t∈R

xi−1(t) = mi

Hence system (4.10) is uniformly persistent.
Using again (4.12) and (4.13), we can easily prove that

[m1,M1] ⊂ b1
a1
f([mn,Mn]), [mi,Mi] ⊂ k1

bi
ai

[mi−1,Mi−1] , i = 2, . . . , n.

Therefore,

[mn,Mn] ⊂ kn−1
1

b1 . . . bn
a1 . . . an

f([mn,Mn]) = h([mn,Mn])
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and we can conclude that

[mn,Mn] ⊂ h([mn,Mn]) ⊂ h2([mn,Mn]) ⊂ · · ·
As a consequence, if the unique fixed point zn of h is a global attractor, then
mn = Mn, from where mi = Mi for each i = 1, . . . , n− 1 and system (4.10)
has an asymptotically stable equilibrium (z1, . . . , zn).

Next, applying Corollary 3.10 as it was done in Theorem 4.10 we obtain
the following:

Theorem 4.12. Suppose that
n∏
i=1

ai
bi
> kn1

µ− 1
µ

(µ− 1)1/µ . (4.14)

Then xi(φ)(t)→ zi, i = 1, ..., n for every solution of (4.10) with initial values
φi ∈ BC+, i = 1, ..., n.

Now we compare our estimation (4.14) with those obtained in [14, 23].
First, in [14, Section 5, pag. 229] the authors prove, using linearization,

the (local) exponential stability of the equilibrium of system (4.10) with
finite delay under exactly the same condition (4.14). Thus we improve their
result since we consider infinite delay (also proving the global attractivity in
the case of finite delay).

On the other hand, Ruess and Summers consider system (4.10) and give
the following condition for the asymptotical stability of the equilibrium in
the case n = 2 (see [23, Example 4.3, pp. 1248 – 1249]): M < α where
α = min{a1, a2} and M = k1((b1c(µ))2 + b22)1/2, being c(1) = 1 and

c(µ) =
(µ+ 1)2

4µ

(µ− 1
µ+ 1

)(µ−1)/µ
, µ > 1.

Next we prove that our condition is better than the previous one for all
µ ≥ 1. It is clear that α2 ≤ a1a2 and then estimation M2 < a1a2 is better
than M < α in [23]. But M2 < a1a2 if and only if

k2
1((b1c(µ))2 + b22) < a1a2.

Therefore, our condition is sharper than Ruess-Summers condition if

b21c
2(µ) + b22 > b1b2

µ− 1
µ

(µ− 1)1/µ,

or, equivalently,

c2(µ)− 1
4

[µ− 1
µ

(µ− 1)1/µ
]2
> 0.
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Finally, it is easy to check that this inequality holds whenever µ ≥ 1.

Remark 4.13. Finally we note that, regardless of the fact that all consid-
ered models (Mackey-Glass, Lasota-Wazewska, Goodwin) led us to the study
of one-dimensional maps h satisfying (H1), the application of our main re-
sults is similar when h is an unimodal map (see hypothesis (H2)). It should
be noted that it is not the case for delay-differential equations with variable
(e.g. almost periodic) coefficients [4].

5. A generalization

In the last section of the paper, we will indicate how our results about the
convergence of all solutions to some positive equilibrium can be generalized
to the functional differential equations

x′(t) = −Lxt + f(xt), x ∈ R, (5.1)

where Lxt =
∫ τ

0 x(t− s)dp(s) for some nonconstant nondecreasing function
p with p(0) = 0. In this case, the cone C+

I is not semiflow invariant, so
that the nonlinearity f should be considered on the whole space CI . We will
suppose that f satisfies there all general properties indicated in Section 2.2.
Moreover, since we will be interested in eventually positive solutions to (5.1),
we will suppose that the restriction of f on C+

I also satisfies the assumptions
formulated in Section 2.2. In particular, this means that h(R+) ⊂ R+. To
simplify the exposition, we will suppose that the hypothesis (H1) is verified.

To have the eventual positivity of all solutions, we need some special
positivity properties of the linear part to Eq. (5.1). We discuss briefly this
aspect of the problem in the following subsection of paper.

5.1. Linear equation. Throughout the section, we will suppose that the
equation

x′(t) = −Lxt (5.2)

has a nonnegative fundamental solution v : [−τ,∞) → R+, v(t) = 0, t ∈
[−τ, 0), v(0) = 1 and v ∈ L1([0,+∞)).

Lemma 5.1. Let δ = p(τ) > 0. Then δ
∫ +∞

0 v(t)dt = 1 and v(t) > 0 for all
t ≥ 0.

Proof. Since Lvt =
∫ τ

0 v(t− s)dp(s) for nondecreasing p(s), we have

v(a)− 1 = −
∫ a

0
Lvtdt = −

∫ a

0

∫ τ

0
v(t− s)dp(s)dt
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= −
∫ τ

0

∫ a

0
v(t− s)dtdp(s) = −

∫ τ

0

∫ a−s

0
v(t)dtdp(s)

= −δ
∫ a

0
v(t)dt+

∫ τ

0

∫ a

a−s
v(t)dtdp(s). (5.3)

Now, since lima→+∞ v(a) = 0, we have

0 ≤ |
∫ τ

0

∫ a

a−s
v(t)dtdp(s)| ≤ p(τ)

∫ a

a−τ
v(t)dt→ 0

as a→ +∞. Finally, −1 = −δ
∫∞

0 v(t)dt and the first part of Lemma 5.1 is
proved.

Next, if v(a) = 0 at some point a > 0, we have that v(t) = 0 for t ≥ a
and δ

∫ a
0 v(t)dt = 1. Hence (5.3) implies that∫ τ

0

∫ a

a−s
v(t)dtdp(s) = 0 . (5.4)

Since
∫ a
a−s v(t)dt > 0 for all s ∈ (0, a], by the mean value theorem, (5.4)

holds only if Lxt = δx(t). Therefore v(a) = exp(−δa) > 0, a contradiction.
¤

Notice that the characteristic equation corresponding to (5.2) is given by

∆(λ) = λ+
∫ τ

0
exp(−λs)dp(s) = 0. (5.5)

Obviously, the characteristic function ∆(λ) does not have nonnegative real
roots, and it is an easy exercise to generalize the proof of the above lemma
to get the equality∫ +∞

0
exp(−λt)v(t)dt = 1/∆(λ), λ ≥ 0, (5.6)

establishing the relation between the Laplace transform ṽ(λ) of the funda-
mental solution and the characteristic function to (5.2) (compare with [11,
p.19]).

On the other hand, Eq. (5.2) has at least one real eigenvalue as a conse-
quence of the positivity property of v(t), we will prove this fact following an
idea from [1]:

Lemma 5.2. ∆(λ) > 0 for all λ ≥ 0 and ∆(µ) = 0 for some µ < 0.

Sketch of proof. (see [1] for more details) Lemma is trivial when Lxt =
δx(t), therefore we can assume that τ > 0 and that p(s) is not constant
in some subinterval [n,m] ⊂ (0, τ ]. Suppose now, contrary to our claim,
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that ∆(λ) > 0 for all λ ∈ R. Then, since ∆(λ) is complex analytic on
the whole real axis, the Laplace transform ṽ(λ) (analytic over the semi-
plane {<λ > 0}) has an analytic continuation on R ⊂ C. This implies, via
the multiple applications of Beppo-Levi’s theorem (see [1, p.102]), that the
formula (5.6) also holds for all real λ. Moreover, for λ < 0, we have

∆(λ) ≥ λ+
∫ m

n
exp(−λs)dp(s) ≥ λ+ exp(−λn)(p(m)− p(n)),

and therefore 0 < ṽ(0) ≤ limλ→−∞ ṽ(λ) = 1/ limλ→−∞∆(λ) = 0, a contra-
diction. ¤

Take now the biggest µ < 0 such that ∆(µ) = 0 and consider the closed
cone

Kµ = {φ ∈ C : φ ≥ 0 and φ(s) exp(−µs) is nondecreasing on [−τ, 0]}.
(5.7)

Corollary 5.3. The linear semigroup T (t) : C → C generated by Eq. (5.2)
is asymptotically stable and the cone Kµ is T (t)- invariant.

Proof. The invariance of Kµ follows from [25, Proposition 1.4, p. 105 and
Theorem 1.1, p. 102]. Next, by [25, Theorem 4.1, pp. 110 and 117], the
stability modulus sL = sup{<λ : ∆(λ) = 0} of Eq. (5.2) also satisfies the
characteristic equation. This means that sL < 0 and therefore there exist
constants k1, k2 > 0 such that |T (t)φ|0 ≤ k1 exp(−k2t)|φ|0 for all t ≥ 0 and
φ ∈ C [11, Corollary 6.1, p. 215]. ¤

5.2. Attractivity properties of Eq. (5.1). Notice that the conclusion of
Lemma 3.1 will still hold if we replace the space C+

I in its formulation by
CI . Indeed, in this case, the variation of parameters formula (3.2) takes the
following form

x(φ)(t) = (T (t)φ̂)(0) +
∫ t

0
v(t− s)f(xs(φ))ds, t ∈ [0, κ), (5.8)

where we write φ̂(s) = φ(s), s ∈ [−τ, 0] for every φ ∈ CI . Now, the second
term in the right-hand side of (5.8) is positive in virtue of (H1) and the
positivity of v and f , while the first term is exponentially decreasing by
Corollary 5.3. Therefore the arguments of Lemma 3.1 continue to work in
the new situation. In particular, (3.1) implies immediately the eventual
positivity of all solutions. Moreover, since the trajectory xt(φ) is attracted
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by its ω-limit set ω(φ) consisting from bounded and positive solutions only,
we obtain that

lim inf
t→+∞

x(φ)(t) ≥ min
ψ∈ω(φ)

inf
t∈R

∫ t

−∞
v(t− s)f(xs(ψ))ds

≥
∫ t

−∞
v(t− s)f(h(0))ds ≥ h2(0).

In this way, the eventual uniformly persistence of Eq. (5.1) is established
and thus we can apply all attractivity results given in the third section of
the work. We will summarize them in the following statement:

Theorem 5.4. Let φ ∈ CI be bounded and continuous. Then the solu-
tion x(φ)(t) to Eq. (5.1) exists for all t ≥ 0 and lim inft→+∞ x(φ)(t) ≥
h(0) > 0. Furthermore, x(φ)(t) > 0 for all t > 0 when φ̂ ∈ Kµ. Finally,
limt→+∞ x(φ)(t) = x2, when the unique fixed point x2 of the strictly decreas-
ing map h : [0, h(0)]→ [0, h(0)] is globally attracting.

5.3. Example. In the whole Banach space UCg, we consider now the fol-
lowing generalization of the Lasota-Wazewska equation from Section 4.1:

x′(t) = −δx(t− τ) +
∫ ∞

0
e−γ(s)|x(t−s)|dq(s), δτ ∈ (0,

1
e

], (5.9)

where q : [0,+∞)→ (0,+∞) and γ : [0,∞)→ (0,∞) satisfy all hypotheses
of Section 4.1. Consider also g with the properties mentioned there. Again,
it is easy to verify that the functional

f(φ) =
∫ ∞

0
e−γ(s)|φ(−s)|dq(s)

is well defined and Lipschitzian over such UCg and satisfies there (H1) to-
gether with (2.1). Moreover, notice that the condition 0 < δτ ≤ 1/e implies
the positivity of the fundamental solution v(t) in the case Lxt = δx(t − τ)
(see [7, Theorem 3.3.1]). By Lemma 5.2, this gives the existence of a negative
real root µ to the characteristic equation µ+ δ exp(−τµ) = 0.

Now, applying Theorem 5.4, we see that all results proved in Section 4.1
still hold for Eq. (5.9) if we replace there the cone BC+ of initial functions
by the whole space BC. Moreover, all solutions x(φ)(t) to (5.9) with φ̂ ∈ Kµ

are positive. Hence, we can see that small delays (τ ≤ (δe)−1) in the linear
part of (5.9) are harmless for the global stability of x2, improving in this
sense the results in [21].
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