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Abstract We address the global stability properties of the positive equilibrium
in a general delayed discrete population model. Our results are used to inves-
tigate in detail a well-known model for baleen whale populations.
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1 Introduction

The dynamics of single-species population models with nonoverlapping gener-
ations has been one of the strong motivations for the impressive development
of the theory of discrete dynamical systems. Since the celebrated papers by May
([25,26], among others), a lot of papers and monographs have been written on
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this subject. Models as the Beverton–Holt and Ricker equations [36, Chapter 9],
or the well-known quadratic family (also known as the discrete logistic model
[30, Sect. 2.3]) were investigated by a large number of authors. These models
can be described by a recurrence

xn+1 = h(xn), n = 0, 1, . . . (1)

Equation (1) is also referred to as first-order difference equation or one-dimen-
sional dynamical system. Here, xn denotes the size of a given population after
n years, and h is a stock-recruitment function.

However, as pointed out by several authors (see, e.g., [5,21]), sometimes this
recruitment takes place several years after birth. In these situations, the model
should include a delay effect, and this leads to study a higher order difference
equation

xn+1 = h(xn, xn−k), n = 0, 1, . . . , (2)

where k ≥ 1 is an integer. See also [30, Sect. 2.5] for more discussions on Eq. (2).
Notice that a solution of (2) is a real sequence {xn}n≥−k, where (x−k, . . . , x−1, x0)

is the initial data.
The most famous forms of Eq. (2) are

xn+1 = xnf (xn−k), n = 0, 1, . . . , (3)

and

xn+1 = αxn + f (xn−k), n = 0, 1, . . . (4)

Equation (3) includes the delayed Pielou [31] and Ricker [30, p. 51] equations
(see other models in [21]). On the other hand, Eq. (4) was considered by Clark
[5]; the parameter α ∈ (0, 1) is a survival coefficient, and the term f (xn−k) rep-
resents recruitment, which takes place with a delay of k years. We notice that
Eq. (4) is often referred as to the Clark model, and it represents a simple way
of adding explicit age structure to a lumped model (see [3]).

In particular, this is the form of a model for the baleen whale used by the
International Whaling Commission. It can be written as

xn+1 = (1 − µ)xn + µxn−k

[
1 + q

(
1 −

(xn−k

K

)z)]
+

, n = 0, 1, . . . , (5)

where [x]+ = max{x, 0}. Here, xn is the size of the population of sexually mature
whales at time n, (1 − µ)xn is the surviving fraction of whales that contribute
to the population after one year (0 < µ < 1), K is the unharvested equilibrium
density, q = Q/P is the rate between the maximum increase Q in the fecundity
possible as the population density falls to low levels and the per capita fecun-
dity of females P, and z is a response parameter that measures the severity with
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which the changes in the population density are registered. For a more detailed
explanation on the model and further generalizations, see [3,5,10,28,30].

One of our results establishes that the population modeled by Eq. (5) sta-
bilizes around the positive equilibrium K whenever the relation qz remains
below 2, no matter the value of the maturity delay k and the initial size of the
population. Moreover, this result cannot be improvable in the sense that, if
qz > 2, then there exist values of the delay for which the equilibrium becomes
unstable.

If one considers the one-dimensional version of model (5)

xn+1 = xn

[
1 + q

(
1 −

(xn

K

)z)]
+

, n = 0, 1, . . . ,

then qz = 2 is the exact bifurcation point where the equilibrium losses its
asymptotic stability and nontrivial periodic cycles appear. The situation for (5)
is different. Our approach allows us to prove that the equilibrium is still globally
stable if qz > 2 and the survival rate after k years (1 − µ)k is large enough.
This fact is another support to Bostford’s claim that addition of age structure is
stabilizing [3].

Other important motivation for the study of Eq. (4) is due to the fact that it
is obtained as a discrete version of the delay differential equation

x′(t) = −x(t) + h(x(t − τ)), τ > 0, (6)

which has been used as a model for many biological processes as the Mackey–
Glass equation [24], and the Nicholson’s blowflies model [13]. See [16, p.78] for
more applications. In fact, the Euler discretization of (6) with step τ/k leads to
equation

xn+1 = αxn + (1 − α)h(xn−k), n = 0, 1, . . . , (7)

where α = 1 − τ/k ∈ (0, 1) (see, e.g., [15,18]). The reader can find some exam-
ples of Eq. (7) which are discrete analogues of models of the form (6) in [19,
Chapter 4]; see also [8,9,14,18,37].

In this paper we will consider precisely Eq. (7), which is equivalent to (4).
The reason is that the equilibrium points of (7) are exactly the fixed points of
h, and it is quite natural to relate the dynamics of (7) with that of the first order
difference equation (1). In general, the nonlinearities h in difference equations
of population dynamics have the following properties

Assumption 1 [36, Assumption 9.4] h : (0, ∞) → (0, ∞) is continuous, has a
unique fixed point x̄, and is bounded on (0, x̄]. Furthermore, h(x) > x for x < x̄,
and h(x) < x for x > x̄.

In this paper, we consider a more general assumption

Assumption 2 h : (0, ∞) → [0, ∞) is continuous and has a unique fixed point
x̄. Furthermore, h(x) > x for x < x̄, and h(x) < x for x > x̄.
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We will assume as well that there exists h(0+) = limx→0+ h(x), allowing the
case h(0+) = ∞. Notice that, under our assumptions, h may vanish at some
points x > 0 [this is the case for Eq. (5)], and some of our results are valid
for the unbounded case when h(0+) = ∞. If h(0+) < ∞, h can be obviously
extended to a continuous function h : [0, ∞) → [0, ∞); moreover, a typical case
is h(0) = 0.

Due to biological reasons, only nonnegative initial conditions will be con-
sidered; more precisely, when h(0) is not defined, the unique admissible initial
conditions are those vectors (x−k, . . . , x−1, x0) ∈ Rk+1 such that xi > 0, i =
−k, . . . , 0. On the other hand, if h is defined on [0, ∞), then the set of initial
conditions can be extended to

S = {(x−k, . . . , x−1, x0) ∈ Rk+1 : xi ≥ 0, i = −k, . . . , 0, x0 > 0}.

In any case, we will only consider solutions corresponding to admissible initial
conditions, which will be called admissible solutions.

The study of the stability properties of the equilibrium x̄ for Eq. (7) is the
main aim of this paper. The local asymptotic stability was discussed in [5] (see
also [20] for an explicit formula). Global stability properties are much more
difficult to obtain. We say that x̄ is a global attractor for (7) if all admissible
solutions converge to x̄ as n → ∞. On the other hand, x̄ is called globally stable
if it is a stable global attractor.

In the literature, one can find many conditions to ensure that x̄ is a global
attractor for the one-dimensional dynamical system generated by (1). For exam-
ple, under Assumption 1, x̄ is a global attractor for (1) if and only if x̄ is the
unique fixed point of function h2 = h ◦ h ([36, Theorem 9.6]). In fact, such a
result can be obtained from the classical theorems for maps of type 1, that is,
maps without cycles of period greater than one (see, e.g., [2,34]). Furthermore,
in this case, a globally attracting fixed point for (1) is always globally stable (see,
e. g., [6]).

It is quite natural that the first idea to study the global stability properties of
the equilibrium x̄ in Eq. (7) consists in relating Eqs. (1) and (7). This was the
approach made independently by Fisher et al. [10,11] and Ivanov [17]. Roughly
speaking, their results establish that if x̄ is a global attractor for (1) in a closed
invariant interval [a, b] containing x̄, then x̄ attracts all solutions of (7) with
initial conditions x−k, . . . , x0 ∈ (a, b). The results in [10] are valid for systems of
difference equations, but they only apply to intervals centered at x̄. For partic-
ular cases, some related results can be found in [18,19] (for decreasing h), and
[1,15] (for the limit case α = 0).

We emphasize that, for any admissible initial condition (x−k, . . . , x−1, x0), a
simple induction argument shows that the corresponding solution {xn} of (7) is
well defined and satisfies xn > 0 for all n ≥ 0. This is not necessarily true for
Eq. (1) under Assumption 2, since h(xn) may be zero for some n ≥ 1 even if
x0 > 0. Hence, the results in [10,17] do not always allow to establish the global
stability for equation (7). One of the aims of this paper consists in extending
these results to a more general situation. We will prove the following result:
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Theorem 1 Assume that h satisfies the conditions of Assumption 2. Let M =
sup0<x<x̄ h(x) < ∞. If h(x) �= 0 for all x ∈ (0, M], and x̄ is a global attractor for
(1) in (0, M], then x̄ is globally stable for Eq. (7).

Remark 1 When h(0) = 0, condition h(x) �= 0 for all x ∈ (0, M] cannot be
weakened. Indeed, according [36, Theorem 9.8], if there exists N ∈ (0, M) such
that h(0) = h(N) = 0, then h2 must have a fixed point in (0, x̄), and hence x̄
cannot be globally attracting in (0, M].

In order to apply Theorem 1 to particular examples of Eq. (7), one can use
some of the various sufficient conditions in the literature to ensure that a con-
tinuous map with a unique fixed point is globally stable. Among them, due to
its applications in population models, we mention [6,7,12,32]. In Sect. 4, we
use some appropriate results of this type to study the baleen whale population
model (5).

However, as noticed in [10], this kind of results only apply when the equi-
librium point of (1) is attracting. Moreover, they are independent on the delay
k in Eq. (7) (such stability conditions which are independent of the delay are
usually called absolute stability conditions). In order to obtain results on the
global stability when x̄ is unstable for (1), other approach is necessary. There
are some recent results of this type for Eq. (7); see, for example [8,9,14,19] for
h decreasing, and [14,37] for unimodal h (that is, h has a unique hump). As far
as we know, the general case of h satisfying Assumption 2, including functions
with several humps, has not been addressed. The other aim of our paper consists
in proving some results in this direction.

We have organized our results as follows: in Sect. 2 we prove the bound-
edness and persistence of the solutions to (7) when h satisfies the conditions
of Assumption 2; then, some lemmas are derived which are very important in
next section. Section 3 is devoted to find sufficient conditions to ensure that the
equilibrium x̄ is a global attractor for (7); in particular, Theorem 1 is proved,
and other stability conditions are found which apply when x̄ is not a global
attractor of (1). Finally, in Sect. 4, we apply our results to model (5), improving
earlier results in the literature.

2 Boundedness and persistence

In this section, we prove that, if Assumption 2 holds, then all solutions of (7)
are bounded and persistent, that is, for all solutions {xn} with admissible initial
conditions, the following inequalities hold:

0 < lim inf
n→∞ xn ≤ lim sup

n→∞
xn < ∞. (8)

A difference equation satisfying the relations (8) for any admissible solution
is sometimes called permanent (see [19, Sect. 2.2]).

Theorem 2 Let Assumption 2 holds. Then Eq. (7) is permanent.



H. A. El-Morshedy, E. Liz

Proof We consider two different cases.

Case 1 h(0+) < ∞.

Suppose that {xn} is an unbounded solution of (7). Then there exists an inte-
ger sequence {ni}, ni → ∞ as i → ∞, such that xni+1 = max{xn : n ≤ ni+1}.
Thus limi→∞ xni+1 = ∞ and

xni+1 = αxni + (1 − α)h(xni−k) ≤ αxni+1 + (1 − α)h(xni−k).

Rearranging, we get the inequality

xni+1 ≤ h(xni−k). (9)

According to the definition of xni+1 and (9), we get xni−k ∈ (0, x̄] for all i.
Therefore, the continuity of h leads to the existence of a number A > 0 such
that h(xni−k) ≤ A for all i. Combining this with (9), we get xni+1 ≤ A for all i,
which contradicts the definition of xni+1. Thus {xn} is bounded.

Next, if there exists a solution {xn} of (7) such that lim infn→∞ xn = 0, then
an integer sequence {ni}, ni → ∞, can be chosen such that

xni+1 = min{xn : n ≤ ni + 1}, lim
i→∞ xni+1 = 0. (10)

Since xn+1 ≥ αxn for all n ≥ 1, we get limi→∞ xni = 0. An induction argument
on the previous inequality yields that limi→∞ xni−k = 0. Choose an integer i0
so large that xni−k ∈ (0, x̄) for all i ≥ i0. Then (7) implies

xni+1 ≥ h(xni−k) > xni−k, i ≥ i0,

which contradicts the definition of xni+1.

Case 2 h(0+) = ∞.

First, assume that lim infn→∞ xn = 0. Define the integer sequence {ni} as in
(10). Then limi→∞ xni+1 = limi→∞ xni = limi→∞ xni−k = 0. From (7), we get

0 = ( lim
i→∞ xni+1 − α lim

i→∞ xni) = (1 − α) lim
i→∞ h(xni−k) = ∞,

which is impossible. Now, if lim supn→∞ xn = ∞, one can define the sequence
{ni} as in the proof of boundedness in Case 1. Then (9) holds and xni−k ∈ (0, x̄]
for all i. So, letting i → ∞, the inequality (9) yields limi→∞ xni−k = 0, which is
impossible according to the first part of Case 2. 	


It is not hard to prove (see [8, p. 754]) that any solution of (7) is also a solution
of the higher order difference equation

xn+1 = F(xn−k) + (1 − α)

k∑
i=1

αih(xn−k−i), n ≥ 2k, (11)
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where F(x) = αk+1x + (1 − α)h(x) for all x > 0. This relation will be useful
in the following two technical lemmas, which in turn are crucial to prove our
global stability results.

Lemma 1 Let {xn} be a solution of (7) that is not attracted to the equilibrium
point x̄. Then there exists a set of positive real numbers L, Li, S, Si, where Li, Si ∈
[L, S], i = 0, 1, . . . , 2k, such that the following relations hold:

L = αL0 + (1 − α)h(Lk), (12)

S = αS0 + (1 − α)h(Sk), (13)

L = F(Lk) + (1 − α)

k∑
i=1

αih(Lk+i), (14)

and

S = F(Sk) + (1 − α)

k∑
i=1

αih(Sk+i). (15)

Moreover,

L ≥ h(Lk) and S ≤ h(Sk). (16)

Proof Using Theorem 2, one can find two positive real numbers; say L, S such
that L = lim infn→∞ xn and S = lim supn→∞ xn. Following [9], there exist two
sequences of integers {nl} and {n′

l}, with liml→∞ nl = liml→∞ n′
l = ∞, such

that

lim
l→∞

xnl+1 = L, lim
l→∞

xnl−i = Li, lim
l→∞

xn′
l+1 = S, lim

l→∞
xn′

l−i = Si,

with Li, Si ∈ [L, S] for all i = 0, 1, . . . , 2k. Now, taking the limits of both sides
of (7) and (11) through nl and n′

l, we obtain Eqs. (12)–(15), while (16) is derived
from (12) and (13) using the fact that L0 ≥ L and S0 ≤ S. 	


Lemma 2 Assume that {xn} is a solution of (7) which is not attracted to x̄. If L,
Lk, Sk and S are defined as before, then

L ≤ Sk < x̄ < Lk ≤ S. (17)

Proof From (16) we obtain Lk ≥ h(Lk) and Sk ≤ h(Sk). Therefore, Lk ∈ [x̄, S]
and Sk ∈ [L, x̄]. If Sk = x̄ , then (16) implies that S ≤ h(Sk) = x̄ and hence
S = Lk = x̄, which yields L ≥ h(Lk) = x̄. Thus L = S = x̄, which is a contradic-
tion. If we assume that Lk = x̄, similar arguments imply that L = S = x̄. 	
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3 Global stability

In this section, we obtain some sufficient conditions to ensure that x̄ is globally
stable or globally attracting for Eq. (7). From now on, we always assume that h
satisfies the conditions of Assumption 2, and we denote

M = sup
0<x<x̄

h(x).

Now we are in a position to prove Theorem 1.

Proof of Theorem 1 Assume that {xn} is a solution of (7) which is not attracted
to x̄. Let m be a positive number defined by m = minL≤x≤M h(x). Then h(x) ∈
[m, M] for all x ∈ [L, M]. For x ∈ [m, L), we have M ≥ h(x) > x ≥ m. Thus
h([m, M]) ⊆ [m, M]. Since x̄ is a global attractor for (1) in (0, M], it follows
from [14, Corollary 4] that

hi([m, M]) → x̄ as i → ∞.

Next, from (16) and (17) we get [L, S] ⊆ h([L, S]) and [L, S] ⊆ [m, M]. Hence,
[L, S] ⊆ h([m, M]), and simple induction yields

[L, S] ⊆ hi([m, M]) i = 0, 1, . . . .

Letting i → ∞ in the above relation, it follows that L = S = x̄. This shows that
x̄ is a global attractor. Next, since a unique globally attracting fixed point for
(1) must be stable, Theorem 3 in [10] implies that x̄ is also stable for (7), and
hence it is globally stable. 	


In our next result, condition M < ∞ is not necessary.

Theorem 3 Assume that either M = x̄ or h is monotonically increasing on (x̄, M),
then x̄ is globally stable for Eq. (7).

Proof Assume, as before, that {xn} is a solution of (7) which is not attracted to
x̄, and let L, S be as defined in the statement of Lemma 1. From (16) and (17)
it follows that M ≥ S > x̄, which is impossible if M = x̄. If h(x) is increasing
on (x̄, M), then (16) and the fact that M > Lk > x̄ imply that L ≥ h(Lk) > x̄,
a contradiction to (17). Thus x̄ is globally attracting for (7). Finally, since the
conditions of the theorem imply that x̄ must be stable for (1), we conclude as
before that it is globally stable for (7). 	

Remark 2 Theorem 3 generalizes [14, Corollary 10], where a similar result is
proved for C1-maps with at most one critical point.

In order to address the global attractivity of x̄ for (7) when it is not a globally
attracting fixed point of h, we introduce the linear functions ui, i = 1, 2, as
follows:

ui(x) = −dix + (1 + di)x̄,
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where di > 0 for i = 1, 2. Assume that h satisfies

h(x) < u1(x) if 0 ≤ x < x̄, and h(x) > u2(x) if x > x̄. (18)

If L < S, then (16), (17) and (18) yield

L > u2(Lk), S < u1(Sk). (19)

Thus,

Lk > u−1
2 (L), Sk < u−1

1 (S). (20)

It is also easy to see that

h(Lk+i) ≥ Lk+i ≥ L > u2(Lk) ≥ u2(S) if Lk+i ≤ x̄,
h(Lk+i) > u2(Lk+i) ≥ u2(S) if Lk+i > x̄,

(21)

and

h(Sk+i) < u1(Sk+i) ≤ u1(L) if Sk+i < x̄,
h(Sk+i) ≤ Sk+i ≤ S < u1(Sk) ≤ u1(L) if Sk+i ≥ x̄.

(22)

We denote by CB the class of functions h satisfying (18) for some d1, d2 > 0;
notice that CB contains all continuous functions on (0, ∞) with h(x̄) = x̄ except
possibly functions with either one of the following properties:

h(0+) = ∞, or lim
�→0

+−

h(x̄ + �) − h(x̄)

�
= −∞.

An application of Theorem 1 shows that x̄ is globally stable if d1d2 ≤ 1 in
(18).

Theorem 4 Let h ∈ CB on the interval (0, M). If d1d2 ≤ 1, then x̄ is globally
stable for equation (7).

Proof Condition d1d2 ≤ 1 implies that u1(0) ≤ u−1
2 (0), and therefore h(x) �= 0

for all x ∈ (0, M]. Next, it is easy to show that h2(x) > x for x < x̄, and h2(x) < x
for x > x̄. Hence, x̄ is a global attractor of (1) in (0, M] and the result follows
from Theorem 1. 	

Remark 3 The conclusion of Theorem 4 remains valid if d1d2 < 1 and the
inequalities relating h to u1 and u2 in (18) are nonstrict.

Next, to obtain sharper stability conditions depending on the parameters α

and k, we define the numbers Adj , Bdj as follows:

Adj = αk+1 − dj(1 − αk+1), Bdj = d2
j (1 − αk)

αk + dj
, for j = 1, 2. (23)
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Theorem 5 Let h ∈ CB on the interval (0, M). Then x̄ is a global attractor for
(7) if either one of the following conditions is satisfied:

αk+1 ≤ dj(1 − α), i = 1, 2 and Ad1Ad2 ≤ 1, (24)

αk+1 ≥ dj(1 − α), i = 1, 2 and Bd1Bd2 ≤ 1, (25)

d1(1 − α) ≤ αk+1 ≤ d2(1 − α) and − Ad2 Bd1 ≤ 1, (26)

or

d2(1 − α) ≤ αk+1 ≤ d1(1 − α) and − Ad1Bd2 ≤ 1. (27)

Proof We will give a proof when (24) or (25) are satisfied. The other cases can
be handled similarly. As usual we assume that (7) has a solution {xn} with L < S.
Using the relations (19), (21) and (22), we conclude from (14) and (15) that

L > αk+1Lk + (1 − α)u2(Lk) + (α − αk+1)u2(S)

= (αk+1 − d2(1 − α))Lk − d2(α − αk+1)S + (1 − αk+1)x̄(1 + d2), (28)

and

S < αk+1Sk + (1 − α)u1(Sk) + (α − αk+1)u1(L)

= (αk+1 − d1(1 − α))Sk − d1(α − αk+1)L + (1 − αk+1)x̄(1 + d1). (29)

When (24) holds, then (28) and the fact that Sk, Lk ∈ [L, S] imply that

L > (αk+1 − d2(1 − α))S − d2(α − αk+1)S + (1 − αk+1)x̄(1 + d2)

= Ad2S + (1 − αk+1)x̄(1 + d2). (30)

Similarly, (24) and (29) yield

S < Ad1 L + (1 − αk+1)x̄(1 + d1). (31)

Notice that Adj = αk+1 −dj(1−α)−dj(α−αk+1) < 0, j = 1, 2. Hence, it follows
from (30) and (31) that

(1 − Ad1Ad2)L > (1 − αk+1)x̄(1 + d2 + Ad2(1 + d1)),

and

(1 − Ad1 Ad2)S < (1 − αk+1)x̄(1 + d1 + Ad1(1 + d2)).

Simple calculations show that 1 + d1 + Ad1(1 + d2) = 1 + d2 + Ad2(1 + d1).
Therefore,

(1 − Ad1Ad2)L > (1 − Ad1 Ad2)S,
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which is impossible since Ad1Ad2 ≤ 1.
If (25) holds, then, using (19), inequalities (28) and (29) imply that

L > (αk+1 − d2(1 − α))u−1
2 (L) − d2(α − αk+1)S + (1 − αk+1)x̄(1 + d2)

= (αk+1 − d2(1 − α))

(
− L

d2
+

(
1 + d2

d2

)
x̄
)

− d2(α − αk+1)S

+(1 − αk+1)x̄(1 + d2),

and

S < (αk+1 − d1(1 − α))u−1
1 (S) − d1(α − αk+1)L + (1 − αk+1)x̄(1 + d1)

= (αk+1 − d1(1 − α))

(
− S

d1
+

(
1 + d1

d1

)
x̄
)

− d1(α − αk+1)L

+(1 − αk+1)x̄(1 + d1).

Rearranging, we obtain

L > −Bd2 S + x̄(1 + d2)
d2 + (1 − d2)α

k

αk + d2
, (32)

and

S < −Bd1 L + x̄(1 + d1)
d1 + (1 − d1)α

k

αk + d1
. (33)

Combining these inequalities, it follows that

(1 − Bd1 Bd2)L > x̄(1 + d2)
d2 + (1 − d2)α

k

αk + d2
− Bd2 x̄(1 + d1)

d1 + (1 − d1)α
k

αk + d1
,

and

(1 − Bd1 Bd2)S < x̄(1 + d1)
d1 + (1 − d1)α

k

αk + d1
− Bd1 x̄(1 + d2)

d2 + (1 − d2)α
k

αk + d2
.

Simple calculations show that the right-hand sides of the last two inequalities
are equal. Therefore,

(1 − Bd1Bd2)S < (1 − Bd1Bd2)L,

which is impossible since Bd1Bd2 ≤ 1. 	

Remark 4 From the above proof, we see that the conclusion of Theorem 5 is
true also if just one of the inequalities relating h to u1 and u2 in (18) is not strict.
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If both inequalities are nonstrict, then the conclusion of the theorem holds also
but with strict inequality signs in either one of the inequalities in (24)–(27).

The following lemma can be proved by direct calculations:

Lemma 3 Let Adj , Bdj , j = 1, 2, be defined as in (23). Then,

(a) Ad1 Ad2 ≤ 1 if and only if αk+1 ≥ d1d2 − 1
(1 + d1)(1 + d2)

,

(b) Adj ≥ −1 if and only if αk+1 ≥ dj − 1
dj + 1

,

(c) Bdj ≤ 1 if and only if αk ≥ d2
j − dj

d2
j + 1

.

Notice that Bd1Bd2 ≤ 1 holds provided that Bdj ≤ 1, j = 1, 2.
The following result is an easy consequence of Theorem 5 and Lemma 3.

Corollary 1 Let h ∈ CB on the interval (0, M), and denote d = min{d1, d2},
D = max{d1, d2}. Then x̄ is a global attractor for (7) if either one of the following
conditions is satisfied:

(i)
d1d2 − 1

(1 + d1)(1 + d2)
≤ αk+1 ≤ (1 − α)d.

(ii) αk+1 ≥ max

{
(1 − α)D, α

D2 − D
D2 + 1

}
.

When d1 = d2, Corollary 1 reads as follows:

Corollary 2 Assume that h ∈ CB on the interval (0, M) for some d1 = d2 = d >

0. Then x̄ is a global attractor for (7) if either

d − 1
d + 1

≤ αk+1 ≤ (1 − α)d, (34)

or

αk+1 ≥ max

{
(1 − α)d, α

d2 − d
d2 + 1

}
, (35)

is satisfied.

A combination of (34) and (35) provides the following result.

Corollary 3 Assume that h ∈ CB on the interval (0, M) for some d1 = d2 = d > 0.
If

αk+1 ≥ max

{
d − 1
d + 1

, α
d2 − d
d2 + 1

}
,

then x̄ is a global attractor for (7).
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Remark 5 In the recent paper [37], the global stability of a more general
difference equation

xn+1 = αxn + f (n, xn, . . . , xn−k), n = 0, 1, . . .

is investigated using a generalized Yorke condition on f . When applying their
results to Eq. (7), such a condition requires the existence of a rational function
r(x) = ax/(1 + bx), a < 0, b ≥ 0, such that r(x − x̄) ≤ (1 − α)(h(x) − x̄) ≤ 0
for x ≥ x̄, and r(x − x̄) ≥ (1 − α)(h(x) − x̄) ≥ 0 for x ∈ (x̄ − 1/b, x̄) (we notice
that a similar approach was also used for Eqs. (1), (3) and (6) in [7,22,23],
respectively). The form of this condition with b = 0 (sublinear case) becomes
(18) with d1 = d2 = −a. In [37] it is suggested that condition

αk+1 >
d − 1
d + 1

(36)

should imply that x̄ is a global attractor for (7) if α ∈ (0, α∗
k], where α∗

k ∈ (0, 1)

is a solution of the algebraic equation xk+2 + · · · + x2k+1 = 1. Corollary 3 and
Remark 4 allow us to ensure that condition (36) implies the global attractivity
of x̄ for

α ≤ α̃ = 2(2 + √
2)

4 + 3
√

2
= 0.828427 . . .

This result supports the above conjecture, since it seems that the minimum of
α∗

k is attained for k = 4, and α∗
4 = 0.828811 . . . . Notice the surprising proximity

between α̃ and α∗
4 .

On the other hand, the possibility to choose d1 �= d2 allows us to manage
situations not covered by the results in [37] (see the related example in [7,
Sect. 3.8]).

4 Global stability in Eq. (5)

As we mentioned in the introduction, we apply our results to the baleen whale
model (5). Here, α = 1 − µ and h(x) = x[1 + q(1 − ( x

K )z)]+. Therefore, x̄ = K,

and h(x) = 0 if and only if x = 0 or x ≥ N∗ = K(
1+q

q )1/z. Also, h is differentiable
on (0, N∗) and

h′(x) = 1 + q − q(1 + z)(x/K)z, x ∈ (0, N∗).

In particular, h′(x̄) = 1 − qz, and

h′(x) = 0 if and only if x = x∗ = N∗
(

1
1 + z

)1/z

= K
(

1 + q
q(1 + z)

)1/z

. (37)
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Moreover,

h′′(x) = −qz(1 + z)

K
(x/K)z−1, h′′′(x) = −qz(z2 − 1)

K2 (x/K)z−2. (38)

As far as we know, the only global stability conditions available in the litera-
ture for (5) were obtained by using the global stability properties of x̄ for the
associated first-order difference equation (1) (see [10,19]). Our first result goes
in the same direction, and it improves the mentioned references; in particular,
we show that the restrictive condition (3.3) in [10, p. 652] is not necessary, and
we solve the open problem 4.7.2 in [19, p. 122].

Theorem 6 Assume that qz ≤ 2. Then x̄ is globally stable for Eq. (5).

Remark 6 We emphasize that Theorem 6 is the best possible result for the
global stability of (5) based on the stability of (1). Indeed, qz > 2 is equivalent
to h′(x̄) < −1, which in turn implies that x̄ is an unstable fixed point of h.

On the other hand, condition qz ≤ 2 is also the best possible absolute stability
condition for (5) (see [9, p. 118]).

In order to prove Theorem 6, we will use Theorem 3 when x̄ ≤ x∗, and The-
orem 1 otherwise. In view of (37), x̄ ≤ x∗ if and only if qz ≤ 1. When qz > 1,
we have

M = h(x∗) = N∗ (1 + q)z

(1 + z)1+1/z
, (39)

so that M < N∗ if and only if

qz < (1 + z)1+1/z − z. (40)

We will show in the Appendix that inequality (40) always holds when qz ≤ 2,
since the right-hand side is greater than 2 for all z > 0. Hence, to use Theorem
1, it remains to show that x̄ is a globally attracting fixed point for h in (0, M]. For
it, we will use some known results from one-dimensional dynamical systems.

One of them is based on the Schwarzian derivative of h, and, more precisely,
in the results of Singer [35]. We recall that the Schwarzian derivative, (Sh)(x),
of a C3−map h is defined by

(Sh)(x) = h′′′(x)

h′(x)
− 3

2

(
h′′(x)

h′(x)

)2

,

whenever h′(x) �= 0. The following proposition can be deduced from Singer’s
results (see, e.g., [17, Corollary 1] or [22, Proposition 3.3]).

Proposition 1 Let h : [a, b] → [a, b] be a C3 map with a unique fixed point
x̄ ∈ (a, b), and with at most one critical point x∗ (maximum). If |h′(x̄)| ≤ 1, and
(Sh)(x) < 0 for all x �= x∗, then x̄ is the global attractor of (1) in (a, b).
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In some cases when Lemma 1 does not apply, we can use the following result,
which is an easy consequence of [6, Theorem 3].

Proposition 2 Let h satisfy Assumption 2, and, in addition,

(a) h has a unique critical point x∗ such that h′(x)(x − x∗) < 0 for all x ∈
[0, h(x∗)], x �= x∗,

(b) h(0) = 0 and h(x) > 0 for all x ∈ [0, h(x∗)],
(c) h′′(x) < 0 for x ∈ [x∗, x̄) and h′′(x) has at most one sign change,
(d) h′′′(x) ≥ 0 for all x such that h′′(x) < 0.

If |h′(x̄)| ≤ 1, then x̄ is a global attractor of (1) on (0, h(x∗)].
Notice that, in view of (37), (38),

(Sh)(x) = −qz(z + 1)

2K2(h′(x))2 (x/K)z−2
(

2(z − 1)(q + 1) + (qz2 + 3qz + 2q)(x/K)z
)

,

for all x ∈ (0, N∗) \ {x∗}, so that h has negative Schwarzian derivative for z ≥ 1.
In general, h does not have a negative Schwarzian derivative on (0, N∗) for

all z > 0 since

(
2(z − 1)(q + 1) + (qz2 + 3qz + 2q)(x/K)z

)
|x=K, z=0 = −2 < 0,

which means that (Sh)(x̄) > 0 for z ≈ 0. This is the reason why we need
Proposition 2.

Now, we are in a position to prove Theorem 6.

Proof of Theorem 6 We consider two cases. If qz ∈ (0, 1], then we get h′(x) ≥ 0
on (0, K), which implies that M = x̄. Thus, Theorem 3 proves that x̄ is globally
stable for (5).

Next, assume that qz ∈ (1, 2]. Lemma 4 in Appendix (with y = z+1) implies
that (z + 1)1+1/z − z > 2. Hence, qz ≤ 2 implies that (40) holds and therefore
M < N∗. Next, it is easy to check that conditions of Proposition 2 hold provided
that z < 1. For z ≥ 1, we have shown that (Sh)(x) < 0 for all x �= x∗, and there-
fore Proposition 1 applies with [a, b] = [0, N∗]. Thus, for z > 0 the equilibrium
x̄ is a global attractor of (1) in (0, M]. Hence, the global stability of x̄ follows
from Theorem 1. 	


When qz > 2 or M > N∗, then Theorem 1 fails to apply according to Remark
1. In this case, we can apply Theorem 5. In this regard, the concavity of the graph
of h implies that h satisfies (18) with d1 = |h′(x̄)| = qz − 1 and

d2 =

⎧⎪⎨
⎪⎩

K
N∗ − K

if N∗ > 0,

h(M) − K
K − M

if N∗ > h(x∗).
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Using the mean value theorem, we notice that −d2 is the slope of the tangent
line to a point on the graph of h which lies either between the points (K, K)

and (N∗, 0) or between the points (K, K) and (M, h(M)) . Since h′′(x) < 0
for all x ∈ (K, N∗), we conclude that d1 < d2. Now, using Theorem 5 and its
corollaries, we may obtain some delay-dependent global attractivity conditions.
For example, assuming that d2 = K/(N∗ − K), we have the following result.

Theorem 7 The equilibrium K is the global attractor of Eq. (5) if at least one of
the following conditions is satisfied:

(c1)
(

q
1 + q

)1/z

− 1
qz

≤ (1 − µ)k+1 ≤ µ(qz − 1),

(c2) (1−µ)k+1 ≥max

{
µ

q1/z

(q + 1)1/z − q1/z
, (1 − µ)

2q2/z − (q2 + q)1/z

q2/z + (q1/z − (q + 1)1/z)2

}
,

(c3) µ(qz − 1) ≤ (1 − µ)k+1 ≤ µ
q1/z

(q + 1)1/z − q1/z
and

(1 − µ)k+1 ≥ max

{
(1 − µ)

(qz)2 − 3qz + 2
(qz)2 − 2qz + 2

, −1 + 2
(

q
1 + q

)1/z
}

.

Proof Since

d1 = qz − 1 < d2 = K
N∗ − K

= q1/z

(1 + q)1/z − q1/z
,

conditions (c1) and (c2) follow directly from Corollary 1. For (c3), use (26) in
Theorem 5, and Lemma 3. 	

Remark 7 The stability conditions in Theorem 7 seem to be new for the baleen
whale model (5). They provide new insight on the influence of the involved
parameters in the global stability properties of the positive equilibrium x̄ = K.

5 Discussion

Higher order difference equations are the most appropriate theoretical setting
to study discrete population models for which recruitment takes place several
years after birth; moreover, they seem to be a good way to represent simple
age-structured populations. Although some work has been recently done on
this type of models, even the dynamically simplest case of a globally attracting
fixed point is far from being well studied.

The reason is that, while for many one-dimensional models a simple graphic
analysis allows to derive some basic properties as the boundedness and persis-
tence of the solutions and the attracting properties of the positive equilibrium,
this method is impossible to apply for a delay–difference equation. In this paper,
we have made some progress in this research. First, Theorem 2 is, up to our
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knowledge, the first analytic proof of permanence for the solutions of system (7)
under rather general assumptions. In particular, extinction is not possible for
populations modeled by (7) if Assumption 2 holds. This setting covers not only
the usual monotone or one-humped shape of the recruitment, but also more
general nonlinearities as the two-humped model for the growth of bobwhite
quail populations proposed in [29]. See also related discussions in [3,6,32]. It is
also worth pointing out that we allow the map h to take the value zero, which is
especially useful to address models with truncated nonlinearity, as in the recent
work [4] (where one-dimensional models of this type are discussed).

Regarding the global stability, as noticed by Levin and May [21], even in
the most simple higher order models, it is very difficult to show analytically
that all solutions converge to the equilibrium. In this way, Theorem 1 becomes
very useful, since it reduces the study of the global stability in a delayed model
to that of a related first-order equation. This provides global delay-indepen-
dent stability results for Clark-type models based on known stability criteria
for one-dimensional equations. For example, see the list of seven population
models worked out by Cull in [7].

Theorems 3 and 4 provide easily verifiable conditions for the global stability
in a great variety of models. For example, Theorem 3 ensures that the equilib-
rium is globally stable under Assumption 2 if h is differentiable and h′(x̄) > 0.
We show the applicability of Theorem 4 in Clark model with some typical
stock-recruitment functions. First, for the Ricker model considered in [3,28]

xn+1 = αxn + (1 − α)xn−ker(1−xn−k), n = 0, 1, . . . , (41)

it can be easily checked that all assumptions of Theorem 4 hold with d1 = d2 = 1
if r ≤ 2. Thus, the equilibrium x̄ = 1 in (42) is globally stable if r ≤ 2. One can
check that this is the best delay-independent global stability condition for this
equation, since x̄ becomes unstable for any r > 2 if α is small enough (the exact
value can be explicitly computed from [20]). A completely analogous argument
shows that the equilibrium x̄ = ((r − 1)/b)1/3 in the model

xn+1 = αxn + (1 − α)
rxn−k

1 + bx3
n−k

, n = 0, 1, . . . , (r > 1, b > 0), (42)

is globally stable for r ≤ 3. In this case, the stock-recruitment function was
proposed (for one-dimensional models) by Maynard Smith [27].

All these results provide global stability conditions depending only on the
stock-recruitment function. As suggested in previous works (see, e.g., [3]), the
addition of age structure is stabilizing. Thus, it is interesting to state some global
stability criteria for Eq. (7) depending also on the delay k and the surviving
parameter α. We have addressed this task in Theorem 5 and their corollaries.
The obtained stability conditions are given in terms of the survival rate after
(k + 1) years, which involves both parameters α, k.

We have thoroughly applied our results to the main motivating model for
Eq. (7), namely, the classical fishing model (5), showing (Theorem 6) that
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condition qz ≤ 2 is necessary and sufficient for the absolute (delay-indepen-
dent) global stability of the equilibrium. We emphasize that the recruitment
term in Eq. (5) is rather complicated (as mentioned in [30]). Probably this is
the reason why earlier results by Fisher [10] were not improved up to now. We
have also stated some stability conditions involving the parameters µ and k. In
particular, condition (c2) in Theorem 7 shows that the equilibrium point K is
globally stable when qz > 2 if the survival rate after k years is close to 1.

To finish, we think that Eq. (7) deserves more attention from the mathemat-
ical point of view. In this regard, we suggest some possible directions.

• It was proved that, when the nondelayed model (1) is globally stable, then
the positive equilibrium of (7) is not only globally attracting, but also glob-
ally stable. It would be interesting to study whether is true or not that a
globally attracting fixed point of (7) is necessarily globally stable. Notice
that this is in general false for a higher order difference equation even in the
second-order case xn+1 = F(xn, xn−1), with F continuous. For an example,
see [33].

• Another interesting open problem consists in studying for which discrete
population models the local asymptotic stability of the positive equilib-
rium implies its global stability. For some population models in the form
xn+1 = xnF(xn−k), this was conjectured to be true by Levin and May in [21],
and this conjecture was recently revisited in [23,37]. See the related open
problems for Eq. (7) in [9,14], and recent results for the nondelayed case in
[7].

• It would be of much interest as well to investigate the periodic structure of
the Clark model when the equilibrium losses its global stability, generalizing
in this way the research initiated in [1,15] for the limiting case α = 0 in (7).

Acknowledgments The authors thank Professor Víctor Jiménez López for useful discussions. We
also appreciate the valuable comments by the editor, Professor Alan Hastings, and an anonymous
referee.

Appendix

Lemma 4 yy > (y + 1)y−1 for all y > 1.

Proof Set R(y) = y ln y − (y − 1) ln(y + 1) for all y > 1. Then

R′(y) = 2
y + 1

+ ln
y

y + 1
, R′′(y) = 1 − y

(1 − y)2 , for all y > 1.

Thus R′′(y) < 0 for all y > 1, which implies that

R′(y) > lim
y→∞ R′(y) = 0, for all y > 1.
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Then R increases on (1, ∞). Since R(1) = 0, it follows that R(y) > 0 for all
y > 1, that is,

y ln y > (y − 1) ln(y + 1),

which is equivalent to the required inequality. 	


References

1. Balibrea, F., Linero, A.: On the periodic structure of delayed difference equations of the form
xn = f (xn−k) on I and S1. J. Differ. Equ. Appl. 9, 359–371 (2003)

2. Block, L.S., Coppel, W.A.: Dynamics in one dimension. Lecture notes in Mathematics, vol.
1513. Springer, Berlin Heidelberg New York (1992)

3. Botsford, L.W.: Further analysis of Clark’s delayed recruitment model. Bull. Math. Biol. 54,
275–293 (1992)

4. Braverman, E., Kinzebulatov, D.: On linear perturbations of the Ricker model. Math. Biosci.
DOI: 10.1016/j.mbs.2006.04.008 (2006)

5. Clark, C.W.: A delayed recruitment model of population dynamics with an application to
baleen whale populations. J. Math. Biol. 3, 381–391 (1976)

6. Cull, P.: Stability of discrete one-dimensional population models. Bull. Math. Biol. 50, 67–75
(1988)

7. Cull, P.: Stability in one-dimensional models. Sci. Math. Jpn. 8, 349–357 (2003)
8. El-Morshedy, H.A.: The global attractivity of difference equations of nonincreasing nonlinear-

ities with applications. Comput. Math. Appl. 45, 749–758 (2003)
9. El-Morshedy, H.A., Liz, E.: Convergence to equilibria in discrete population models. J. Differ.

Equ. Appl. 11, 117–131 (2005)
10. Fisher, M.E.: Stability of a class of delay–difference equations. Nonlinear Anal. 8, 645–654

(1984)
11. Fisher, M.E., Goh, B.S.: Stability results for delayed-recruitment models in population dynam-

ics. J. Math. Biol. 19, 147–156 (1984)
12. Fisher, M.E., Goh, B.S., Vincent, T.L.: Some stability conditions for discrete-time single species

models. Bull. Math. Biol. 41, 861–875 (1979)
13. Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21

(1980)
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