
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS
Volume 9, Number 2, March 2003 pp. 309–321

WRIGHT TYPE DELAY DIFFERENTIAL EQUATIONS
WITH NEGATIVE SCHWARZIAN

Eduardo Liz
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Abstract. We prove that the well-known 3/2 stability condition established for the
Wright equation (WE) still holds if the nonlinearity p(exp(−x)−1) in WE is replaced
by a decreasing or unimodal smooth function f with f ′(0) < 0 satisfying the standard
negative feedback and below boundedness conditions and having everywhere negative
Schwarz derivative.

1. Introduction. In this paper we study the global stability properties of the
scalar delay-differential equation

x′(t) = f(x(t − 1)), (1.1)

where f ∈ C3(R, R) satisfies the following additional conditions (H):
(H1) xf(x) < 0 for x �= 0 and f ′(0) < 0.
(H2) f is bounded below and has at most one critical point x∗ ∈ R which is a

local extremum.
(H3) (Sf)(x) < 0 for all x �= x∗, where Sf = f ′′′(f ′)−1 − (3/2)(f ′′)2(f ′)−2 is

the Schwarz derivative of f .
The negative feedback condition (H1) and boundedness condition (H2) are very

typical in the theory of (1.1); the first one causes solutions to tend to oscillate about
zero, while both of them guarantee the existence of the global compact attractor
to Eq. (1.1) (e.g. see [9]). On the other hand, the Schwarzian negativity condition
(H3) is rather common in the theory of one-dimensional dynamical systems (see
[12, 16]) while it is not very usual for the studies of delay-differential equations.
Here, we introduce (H3) in hope of obtaining an analogue of the Singer global
stability result for an one-dimensional map f : I → I; this result (see its complete
formulation below) states that the local stability of a unique fixed point e ∈ I
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plus an appropriate (monotone or unimodal) form of the map f imply the global
attractivity of the equilibrium e ∈ I [12]. The negative Schwarzian condition is not
artificial at all, it appears naturally also in some other contexts of the theory of de-
lay differential equations, see e.g. [10, Sections 6–9], where it is explicitly used, and
[3, Theorem 7.2, p. 388], where the condition Sf < 0 is implicitly required; more-
over, many nonlinear delay differential equations used in mathematical modelling
in biology (e.g. Mackey-Glass, Lasota-Wazewska, Nicholson, Goodwin equations)
have their right-hand sides satisfying the hypothesis (H3). Take also, for example,
the celebrated Wright equation which was used to describe the distribution of prime
numbers or to model population dynamics of a single species:

x′(t) = −px(t − 1)[1 + x(t)], p > 0. (1.2)

For x(t) > −1, Eq. (1.2) is reduced to (1.1) after applying the transformation
y = − ln(1 + x). In this case f(x) = (exp(−x) − 1) and, by abuse of notation, we
will again refer to the transformed system

x′(t) = p(exp(−x(t − 1)) − 1), p > 0, (1.3)

as the Wright equation. In this case, f is strictly decreasing and has no inflexion
points; both these facts simplify considerably the investigation of (1.3). Below, we
will present two other important examples, with nonlinearities which may have an
inflexion point (some “food-limitation” models) or even a local extremum (popula-
tion model exhibiting the Allee effect).

Eq. (1.1) has been considered before by several authors but only assuming
conditions (H1) and (H2), see [9, 11, 22, 23] and references therein. In particular,
the Morse decomposition of its compact attractor has been described in detail in
[9]. Moreover, it was proved also that the Poincaré-Bendixson theorem holds for
(1.1) with the decreasing nonlinearity f so that the asymptotic periodicity is the
“most complicated” type of behavior in (1.3) [9, 11, 23]. It should be noted also
that the above information has essentially a “qualitative” character. So that adding
(H3), we can hope to obtain some additional information of analytic nature about
possible bifurcations in parametrized families of (1.1). The following variational
equation along its unique steady state x = 0 plays a very important role in the
study of such bifurcations:

x′(t) = f ′(0)x(t − 1). (1.4)

As is well-known, this equation is unstable when −f ′(0) > π/2, and this instability
implies the existence of slowly oscillating periodic solutions to (1.1) (see e.g. [22]).
Surprisingly, the dynamically simpler case −f ′(0) < π/2 = 1.571... has not been
studied thoroughly before, and, in particular, it seems that the following Wright
conjecture has not been solved: the inequality p < π/2 is sufficient for the global
stability in (1.3). On the other hand, the sufficiency of the stronger condition
p < 3/2 for the global stability of Eq. (1.3) was proved in ‘a very difficult theorem
of Wright [26]’ (see [2, page 64]), where also the sharper conditions p < 37/24 =
1.5416... and p < 1.567... were announced. It should be noted that proofs of the 3/2
stability condition for Eq. (1.3) have strongly used the specific exponential form
of the nonlinearity f(x) = p(exp(−x) − 1) and, in particular, the monotonicity
properties of such f . This fact explains why any analogue of this Wright result has
not been proved for other, essentially different (nonexponential), right-hand sides
in Eq. (1.1) (even for monotone f , the general situation being considerably more
complicated).
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An important step in solving the Wright conjecture was made in Theorem 3
from [22] which provides us with some examples of Eq. (1.1) which satisfy (H1),
(H2) and have slowly oscillating periodic solutions, even when the corresponding
linearized equation (1.4) is exponentially stable. This means that the local ex-
ponential stability of the steady state in (1.1) (or, what is the same, exponential
stability in (1.4)) with f having only these standard and usual properties (H1),
(H2) in general does not imply the global asymptotic stability in (1.1). Moreover,
as a simple consequence of an elegant approach towards stable periodic orbits for
scalar equations of the form x′(t) = −µx(t) + f(x(t − 1)), µ ≥ 0 with Lipschitz
nonlinearities proposed recently in [24] (see also [25]), we get the following

Theorem 1.1 ([24]). For every α ≥ 0 there exists a smooth strictly decreasing
function f(x) satisfying (H1), (H2), −f ′(0) = α and such that Eq. (1.1) has a
nontrivial periodic solution which is hyperbolic, stable and exponentially attracting
with asymptotic phase (so therefore (1.1) is not globally stable).

This result is of special importance for us, since it shows clearly that the strong
correlation between local (at zero) and global properties of Eq. (1.3) can not be
explained only with the concepts presented in (H1), (H2).

On the other hand, Walther’s result from [22] cannot be applied to Eq. (1.3) so
that the original Wright conjecture remains open. We explain here this particularity
of Eq. (1.3) by its additional property of having negative Schwarz derivative Sf :
in fact, no function from [22, Theorem 3] can have Sf < 0. Moreover, bearing in
mind the following result of D. Singer for one-dimensional maps: “Assume that
the function h ∈ C3[a, b] is either strictly decreasing or has only one critical point
x∗ (local extremum) in [a, b]. If h has a unique fixed point e ∈ [a, b] which is locally
asymptotically stable and (Sh)(x) < 0 for all x �= x∗, then e is the global attractor
of the dynamical system h : [a, b] → [a, b]”, we propose to generalize Wright’s
conjecture in the form stated below.

Conjecture 1.2. Let all conditions (H) be satisfied and −f ′(0) < π/2. Then
lim

t→+∞x(t) = 0 for every solution x(t) to Eq. (1.1).

We remark that this conjecture is very close to the Hal Smith conjecture [17] to
the effect that the local and global asymptotic stabilities for Nicholson’s blowflies
equation

x′(t) = −δx(t) + px(t − 1) exp(−a(x(t − 1))), x, δ, p, a > 0,

are equivalent. Observe that this equation also has a unique positive steady state
and nonlinearity satisfying the negative feedback and the negative Schwarzian con-
ditions (see [1, 8, 18] for further discussions).

Furthermore, due to recent results of Krisztin [5], now we can indicate some
class of symmetric and monotone nonlinearities (e.g. f(x) = −p tanh x, f(x) =
−p arctan x, p > 0) for which the above conjecture is true. Although for both the
mentioned functions condition Sf < 0 holds, in general the additional convexity
condition imposed on f in [5] (see also [6]) is different from (H3): evidently, the
requirement of the negative Schwarzian is not the unique way to approach the
problem (the same situation that we have in the theory of one-dimensional maps).
In fact, to prove our main result (Theorem 1.3), we only need some geometric
consequences of the inequality Sf < 0 for the graph of f . For instance, if f ′′(0) =
0 then this geometric consequence is given by (f(x) − f ′(0)x)x > 0 for x �= 0
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(that necessarily holds also under the above mentioned convexity, symmetry and
monotonicity assumptions from [5, 6]). This geometric approach was developed
further in [8], where a generalization of the Yorke condition [7, Section 4.5] was
proposed instead of (H3).

In this paper we carry out the first step towards Conjecture 1.2, showing how
all the conditions (H) come together in proving

Theorem 1.3. If, in addition to (H), we have −f ′(0) ≤ 1.5, then the steady state
solution x(t) = 0 of Eq. (1.1) is globally attracting.

To prove Theorem 1.3, we will essentially use an idea from [4], which allows us
to construct some one-dimensional map inheriting some properties of Eq. (1.1).
Roughly speaking, we consider maps Fk = Fk(z) : R → R, Fk(0) = 0, which give
the values of the k-th consecutive extremum of the oscillating solutions x(t, z), z �=
0, satisfying x(s, z) ≡ z, s ∈ [−1, 0]. Then we investigate some relations existing
between the global attractivity properties of Fk and (1.1), trying to deduce in this
way the global asymptotical stability of (1.1) from the corresponding property of
the discrete dynamical system generated by Fk. Since the computation becomes
more and more complicated with the growth of k, we only consider the simplest
case k = 1 here. Computer experiments show that, increasing k, we obtain better
approximations to the condition −f ′(0) ≤ π/2 given in Conjecture 1.2 (for example,
for k = 2 we get −f ′(0) ≤ 37/24 and so on). However, due to the technical
complications, this way to approach the above conjecture could be used only for
very special cases.

Curiously, the note [4] devoted to the study of the Yorke type functional differ-
ential equations with sublinear nonlinearity (see [27]) and, in particular, the Yorke
3/2 stability criterion, still can be extended to the class of nonlinear Wright’s type
delay differential equations. We consider the special nature of the number 3/2
(which was found almost simultaneously by A.D. Myshkis [14] and by E.M. Wright
[26]) as an invariant of such a prolongation. Moreover, there exists an interesting
interplay between both these types of functional differential equations if we consider
a variable coefficient p(t) instead of the constant p in Eq. (1.3) (see [19] for details).
In any case, it should be noted that the Yorke and the Wright type equations have
rather different structures (see [4, 19, 20] for more comments).

Completing our discussion, we consider briefly two other Wright type equations
studied recently by several authors:

Example 1.4. The “food-limitation” model [19, p. 456] or, what is basically the
same, the Michaelis-Menten single species growth equation with one delay (see [7,
p. 132]):

x′(t) = −r(1 + x(t))
x(t − h)

1 + cr(1 + x(t − h))
, x > −1, c ≥ 0, r, h > 0 . (1.5)

Note that (1.5) is of the form x′(t) = −r(1 + x(t))g(x(t − h)) with Sg = 0. The
change of variables x = exp(−y) − 1 reduces (1.5) to y′(t) = rf(y(t − h)), where
f(y) = g(exp(−y)−1) is strictly decreasing with f(0) = 0, f ′(0) = −(1+cr)−1, and
(Sf)(y) = −1/2 < 0 for all y. By Theorem 1.3, the inequality rh ≤ (3/2)(1 + cr)
implies the global stability of the zero solution to Eq. (1.5) (compare with [7] and
[19]). We also point out that Eq. (1.5) with c = 0 coincides with the Wright
equation (1.2), so that Wright’s 3/2 stability theorem is a very special case of our
result.
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Example 1.5. Consider now a population model described by

x′(t) = x(t)[a + bx(t − h) − cx2(t − h)], a, c ∈ (0,+∞), b ∈ R. (1.6)

This equation has a unique positive equilibrium e∗ and the change of variables
x = e∗ exp(−y) transforms (1.6) into (1.1) with f(x) = −(a + be∗ exp(−x) −
c(e∗ exp(−x))2). Note that f has negative S-derivative as a composition of a qua-
dratic polynomial and the real exponential function. If b ≤ 0 then f is strictly
decreasing, and if b > 0, then f has exactly one critical point (minimum). In
the latter case, the population model exhibits the so-called Allee effect [13]. Ap-
plying Theorem 1.3, we see that e∗ attracts all positive solutions of (1.6) once
(2ce∗− b)he∗ ≤ 1.5 (compare e.g. with [7, pp. 143-146], where also other references
can be found).

The paper is organized as follows. In Section 2 we define several auxiliary scalar
functions and study their properties as well as relations connecting them. Finally,
in the last section, we use these functions to prove Theorem 1.3 (notice that, in
contrast with [1], we may not use the above formulated Singer’s result for this
purpose).

2. Auxiliary functions. To prove our main result, we will proceed in analogy
to [4], so that the construction of one-dimensional maps inheriting attractivity
properties of the dynamical system generated by Eq. (1.1) is the main tool here.
In this section, we introduce several such scalar maps and study their properties as
well as the relations existing among them.

First we note that we can only have eight different possibilities for the maps
satisfying hypotheses (H), depending on the situation of the eventual critical point
and the inflexion points. A graphic representation of all these cases is given in Fig.
1 below, where x∗ denotes the critical point and c1, c2 are the inflexion points. We
recall that a real function has at most one inflexion point in any interval in which
the Schwarz derivative is well defined and is negative (see [16]).

In the sequel, up to the proof of Theorem 1.3 and with the unique exception
made for Corollary 2.2, we will always assume that f satisfies (H) and f ′′(0) > 0.
This situation corresponds to the pictures (a)-(e) in Fig. 1.

Next, for a < 0, b > 0, we introduce the set

Ka,b = {y ∈ C3(R) : y satisfies (H1), (H2), y′(0) = a, y′′(0) = 2b,
(Sy)(x) ≤ 0 for all x such that y′(x) �= 0}.

Also, for every a < 0 and every b > 0, consider the rational function r(x, a, b) =
a2x/(a − bx) defined over (ab−1,+∞). Let K+

a,b (respectively, K−
a,b) be the set

of restrictions of elements of Ka,b to [0,+∞) (respectively, to (ab−1, 0]). We will
denote by r+ and r− the restrictions of r(·, a, b) to the intervals [0,+∞) and (ab−1, 0]
respectively. The following properties are elementary:

i) r+ ∈ K+
a,b, r− ∈ K−

a,b, Sr ≡ 0 and r(x, a, b) → −a2b−1 as x → +∞;
ii) the inverse ρ of r is given by ρ(x, a, b) = ax/(a2 + bx), and ρ′′′(x) < 0 for all

x > −a2b−1;
iii) the equation r(x, a, b) = −x has exactly two solutions: x1 = 0 and x2 =

(a + a2)/b.

Furthermore, it can be proved that r+ and r− are respectively the minimal element
of K+

a,b and the maximal element of K−
a,b with respect to the usual order. The

following slightly different result will play a key role in the sequel:
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Figure 1. Different maps satisfying (H)

Lemma 2.1. For all y ∈ Ka,b with (Sy)(x) < 0 for x �∈ {w : y′(w) = 0}, we have
r(x, a, b) < y(x) for all x > 0 and also r(x, a, b) > y(x) for all x ∈ (ab−1, 0).

Proof. Take g ∈ C3(R) and define G(x) = g′′(x)/g′(x) for all x ∈ Dg = {x : g′(x) �=
0}. Then we have (Sg)(x) = G′(x) − (1/2)G2(x), x ∈ Dg. Therefore, for every
function g ∈ C3(R) with negative Schwarzian, the associated function G(x) satisfies
the differential Riccati inequality G′(x)− (1/2)G2(x) < 0 for all x ∈ Dg. Now, the
lemma follows from standard comparison results (see, e.g. [21, Theorem 5.III]) if we
observe that R = r′′/r′ and Y = y′′/y′ satisfy (Sr)(x) = R′(x) − (1/2)R2(x) = 0,
(Sy)(x) = Y ′(x) − (1/2)Y 2(x) < 0, for all x ∈ (ab−1,+∞) ∩Dy, and Y (0) = R(0).
Indeed, the above relations imply in cases (a)-(c) that R(x) > Y (x) for all x > 0.
Now, integrating R and Y over the interval (0, x), we get r′(x) < y′(x). Integrating
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r′ and y′ from 0 to x again, we obtain r(x) < y(x) for all x > 0. In cases (d)-(e)
we obtain using the above arguments that r(x) < y(x) for all x ∈ (0, x∗). Now,
since r is strictly decreasing and y reaches its minimum at x∗, it is obvious that
the relation r(x) < y(x) also holds for x ≥ x∗.

Now the previous arguments allow us to prove that r′(x) < y′(x) and r(x) > y(x)
for all x ∈ (ab−1, 0) in cases (a) and (d), where y has no negative inflexion points.

The proof for (b) and (e) is slightly different if the inflexion point c1 of y belongs
to the interval (ab−1, 0). In this case, we can use the same arguments only to show
that r′(x) < y′(x) and r(x) > y(x) for x ∈ [c1, 0). Next, by convexity arguments,

r(x) > r(c1) + r′(c1)(x − c1) > y(c1) + y′(c1)(x − c1) > y(x)

for all x ∈ (ab−1, c1).
Finally, case (c) can be studied analogously taking into account that r is strictly

decreasing on (ab−1, 0), whereas y reaches its maximum at x∗.

As a by-product of the proof of Lemma 2.1, we state the following corollary, which
will be used in the proof of Theorem 1.3 when considering the case f ′′(0) < 0.

Corollary 2.2. Suppose that f satisfies (H) and f ′′(0) < 0. Then f is bounded
on R.

Proof. Since f satisfies (H), the inequality f ′′(0) < 0 implies that either f ′′(x) < 0
for all x ≤ 0 (cases (f) and (g) in Fig. 1) or f has a global maximum at x∗ < 0
(see Fig. 1 (h)). Since in the latter case the statement of the corollary is evident,
we can assume that f ′′(x) < 0 on (−∞, 0].

Next, the function g defined by g(x) = −f(−x) satisfies g′(0) = f ′(0) and
g′′(x) = −f ′′(−x) > 0 for x ≥ 0. Hence g has not inflexion points on [0,+∞) and
we can use the property (Sg)(x) = G′(x) − (1/2)G2(x) < 0 for x ∈ [0,+∞) ∩ Dg

as it was done in the first part of the proof of Lemma 2.1 to establish that g(x) >
r(x) = r(x, g′(0), g′′(0)/2) for x ∈ (0,+∞). Since r is strictly decreasing and
r(+∞) = 2(f ′(0))2/f ′′(0) ∈ R, we can conclude that g is bounded on (0,+∞).
Thus f(x) = −g(−x) is bounded on (−∞, 0). Finally, since f satisfies (H), f is
also bounded on [0,+∞).

Now set

a = f ′(0), 2b = f ′′(0), µ = ab−1 = 2f ′(0)/f ′′(0), r(x) = r(x, f ′(0), f ′′(0)/2)

and define the continuous functions A,B : (µ,+∞) → R and D : R+ → R by

A(x) = x + r(x) +
1

r(x)

∫ 0

x

r(t)dt, B(x) =
1

r(x)

∫ 0

−r(x)

r(s)ds for x �= 0,

A(0) = B(0) = 0, D(x) =
{

A(x) if r(x) < −x,
B(x) if r(x) ≥ −x.

For the case f ′(0) < −1, we will also use the function R(x) = r(x,A′(0), A′′(0)/2)
defined on the interval (2A′(0)/A′′(0),∞) = (ν,∞). Note that A′(0) = f ′(0)+1/2 <
0, A′′(0) = f ′′(0)(1 + (6f ′(0))−1) > 0. It is easy to check that f ′(0) < −1/6
implies (ν,+∞) ⊂ (µ,+∞), and that A(x2) = B(x2), where r(x2) = −x2 < 0.
Also B′(0) = −(r′(0))2/2 = −(f ′(0))2/2. In the following lemmas we state other
properties of the functions A,B,D,R.

Lemma 2.3. If f ′(0) < −1 then A′(x) < 0 and (SA)(x) < 0 for all x ∈ (µ, x2).
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Proof. Since f ′(0) < −1, we have x2 > 0 and −xr(x) < r2(x) for all x ∈ (µ, x2) \
{0}. Hence

∫ 0

x

r(t)dt ≤ −xr(x) < r2(x) and A′(x) = r′(x)
(

1 −
∫ 0

x
r(t)dt

r2(x)

)
< 0, x �= 0.

We get also A′(0) = r′(0) + 1/2 < −1/2 < 0.
Next, integrating by parts, we obtain

A(x) = r(x) +
xr(x) +

∫ 0

x
r(t)dt

r(x)
= r(x) +

xr(x) +
∫ 0

r(x)
vdρ(v)

r(x)

= r(x) +
1

r(x)

∫ r(x)

0

ρ(v)dv = G(r(x)),

where ρ(v) = r−1(v) and G(z) = z +
∫ 1

0
ρ(vz)dv.

Then, by the formula for the Schwarzian derivative of the composition of two
functions [12], we obtain

(SA)(x) = (SG)(r(x))(r′(x))2 + (Sr)(x) = (SG)(r(x))(r′(x))2.

Hence, in order to prove that SA < 0, we have to verify that (SG)(r(x)) < 0. On
the other hand, A′(x) < 0 if and only if G′(r(x)) > 0, so it suffices to show that
(SG)(r(x)) < 0 when G′(r(x)) > 0. Taking into account the fact that ρ′′′(z) < 0 for
z = r(x), we have G′′′(z) =

∫ 1

0
v3ρ′′′(vz)dv < 0 and therefore (SG)(r(x)) < 0.

Lemma 2.4. If f ′(0) < −1 then (A(x) − R(x))x > 0 for x ∈ (ν, x2) \ {0}.
Proof. Recall that R(x) = r(x,A′(0), A′′(0)/2) and apply Lemmas 2.1, 2.3.

Next, we will compare the functions B(x) and R(x) over the interval [x2,+∞).
In order to do that, we need the following simple result:

Lemma 2.5. If (s, ζ) ∈ Π = [−1, 0] × [−1.5,−1.25], then

L(ζ, s) = s − ζ − ln(1 + s − ζ) +
2(ζ + 1/2)2(s − ζ)2

(2ζ + 1)ζ2 + (2/3)ζ(s − ζ)
< 0.

Proof. We have

∂L(ζ, s)
∂s

=
(s − ζ)(s − A−(ζ))(s − A+(ζ))(12ζ2 + 16ζ + 3)

ζ(1 + s − ζ)(6ζ2 + ζ + 2s)2
,

where

A±(ζ) = −72ζ4 + 108ζ3 + 46ζ2 + 15ζ + 3
2(12ζ2 + 16ζ + 3)

±3(ζ + 1)(2ζ + 1)
√

(2ζ + 1)(72ζ3 − 12ζ2 − 6ζ + 1)
2(12ζ2 + 16ζ + 3)

.

Note that A+ and A− are continuous on the interval J = [− 3
2 ,− 2

3 −
√

7
6 ) =

[−1.5,−1.107..), and A−(ζ) < A+(ζ) for all ζ ∈ J . Now, it is straightforward
to see (after several elementary transformations) that every root ζ of A+(ζ) = −1
satisfies ζ(ζ+1)2(12ζ2+16ζ+3)(36ζ2+12ζ−7) = 0, and therefore belongs to the set
{0,−1,−1/6±√

2/3,−2/3±√
7/6} = {0,−1,−0.638..., 0.304...,−1.107...,−0.225...}.

Since A+(−1.5) = −1.29991... < −1, we obtain that

A−(ζ) < A+(ζ) < −1 ≤ s for all ζ ∈ [−1.5,−1.107...) , s ∈ [−1, 0].
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This implies immediately that ∂L(ζ, s)/∂s < 0 for all ζ ∈ [−1.5,−1.25] and s ∈
[−1, 0]. Thus

max
(s,ζ)∈Π

L(ζ, s) = max
ζ∈[−1.5,−1.25]

L(ζ,−1).

Finally, for ζ ∈ [−1.5,−1.25], we have

∂L(ζ,−1)/∂ζ = −(36ζ2 + 16ζ − 3)(ζ + 1)3ζ−2(3ζ + 2)−2(2ζ − 1)−2 > 0,

so that maxζ∈[−1.5,−1.25] L(ζ,−1) = L(−1.25,−1) = −0.0006945... < 0.

Lemma 2.6. If f ′(0) ∈ [−1.5,−1.25] then B(x) > R(x) for all x ≥ x2.

Proof. Note that B(x) = B̃(−r(x)), and R(x) = R̃(−r(x)), where

B̃(u) =
∫ 1

0

r(zu)dz =
ζ

uθ

(
u − 1

θ
ln(1 + θu)

)
,

and

R̃(u) = R(ρ(−u)) = − 2(ζ + 1/2)2u
(2ζ + 1)ζ + (2/3)θu

,

with ζ = f ′(0), θ = −f ′′(0)/(2f ′(0)) > 0 and ρ(x) = r−1(x). Therefore B(x) −
R(x) > 0 for x ∈ [x2,+∞) if and only if B̃(u) − R̃(u) > 0 for all u = −r(x) ∈
[x2,−r(+∞)) = θ−1[−ζ − 1,−ζ). Finally, by Lemma 2.5, we have that

B̃(u) − R̃(u) =
ζ

uθ2
L(ζ, θu + ζ) > 0

for all ζ ∈ [−1.5,−1.25] and u ∈ θ−1[−ζ − 1,−ζ), since in this case s = θu + ζ ∈
[−1, 0].

Lemmas 2.4 and 2.6 together yield the

Corollary 2.7. If f ′(0) ∈ [−1.5,−1.25], then D(x) > R(x) for x > 0.

3. Proof of Theorem 1.3. In this section, we prove Theorem 1.3. Thus we
assume that f satisfies all conditions (H).

Denote by C the space of all continuous real functions γ on the interval [−1, 0],
with the norm given by ‖γ‖ = max−1≤t≤0 |γ(t)|. Since f is continuous, each γ ∈ C
determines a unique solution x = x(·, γ) to Eq. (1.1) on [−1,+∞) such that
x(t) = γ(t), t ∈ [−1, 0]. It is well-known that the application F tγ : R+ × C → C
given by F tγ(s) = xt(s) = x(t + s, γ), s ∈ [−1, 0], defines a continuous semiflow on
C. Moreover, this semiflow is point dissipative:

Lemma 3.1. Assume that f is bounded below and satisfies (H1). Then there exists
K0 > 0 such that for any γ ∈ C we have lim sup

t→+∞
‖F tγ‖ < K0.

Proof. See for example [9, Proposition 2.1].

Now, fix an arbitrary γ ∈ C. It follows from Lemma 3.1 that the ω-limit set
ω(γ) of the trajectory {F tγ : t ∈ R+} ⊂ C is an invariant and compact set. Write
m = mγ = minα∈ω(γ) α(0) and M = Mγ = maxα∈ω(γ) α(0).

Evidently, Theorem 1.3 is proved if we demonstrate that Mγ = mγ = 0 once
−f ′(0) ∈ [0, 1.5]. We only need to consider the case m < 0 < M . Indeed, otherwise
(i.e. m ≥ 0 or M ≤ 0) every solution x(t, α), α ∈ ω(γ), is bounded and monotone
(due to (H1)), and the limit values x± = x(±∞, α) ∈ R are steady states of (1.1).
Now, since (1.1) possesses a unique equilibrium x(t) ≡ 0, we conclude that either
0 = x− ≤ x(t, α) ≤ x+ = 0 or 0 = x− ≥ x(t, α) ≥ x+ = 0 for all t ∈ R, so that
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ω(γ) = {0}. Therefore, m = M = 0 if m ≥ 0 or M ≤ 0, and in the sequel we will
always assume that m < 0 < M .

In the following lemmas we establish some relations between m and M which
are needed in the proof of Theorem 1.3.

Lemma 3.2. We have m > D(M) and m > r(−r(M)/2).

Proof. First we assume that r(M) ≤ −M . Then t1 = M/r(M) ∈ [−1, 0]. Next,
x(t) = r(M)t, t ∈ [t1, t1 + 1] is the solution of the initial value problem x(s) =
M, s ∈ [t1 − 1, t1] for

x′(t) = r(x(t − 1)). (3.1)

Since m = β(0) = minα∈ω(γ) α(0) for some β ∈ ω(γ), and since ω(γ) is an invariant
set, we obtain the existence of a solution z̃(t) : R → R to (1.1) such that z̃(s) =
β(s), s ∈ [−1, 0] and z̃t ∈ ω(γ) for every t ∈ R. Obviously, z(t) = z̃(t − 1) also
satisfies (1.1) for all t ∈ R and is such that z(t) ≥ z(1) = m for all t ∈ R. This
implies 0 = z′(1) = f(z(0)). Finally, by hypothesis (H1), we get z(0) = 0.

Let fix now this solution z = z(t). Clearly M = x(t) ≥ z(t) for all t ∈ [t1 − 1, t1].
Moreover, we will prove that x(t) ≥ z(t) for all t ∈ [t1, 0].

Indeed, if this is not the case we can find t∗ ∈ [t1, 0) such that x(t∗) = z(t∗) and
x(t) ≥ z(t) for all t ∈ [t1 − 1, t∗]. We claim that

z′(t) > x′(t) for all t ∈ [t∗, 0]. (3.2)

We distinguish two cases: if z(t− 1) > 0 then, using Lemma 2.1, we obtain x′(t) =
r(x(t − 1)) ≤ r(z(t − 1)) < f(z(t − 1)) = z′(t). Next if z(t − 1) ≤ 0, then z′(t) =
f(z(t − 1)) ≥ 0 > r(x(t − 1)) = x′(t).

After integration over (t∗, 0), and using x(0) = z(0) = 0, it follows from (3.2)
that z(t∗) < x(t∗), which is a contradiction.

Thus x(t) ≥ z(t) for t ∈ [t1, 0) and, arguing as above, we obtain

m =
∫ 1

0

z′(s)ds =
∫ 1

0

f(z(s − 1))ds >

∫ 1

0

r(x(s − 1))ds =
∫ t1

−1

r(M)ds +
∫ 0

t1

r(x(u))du = M + r(M) +
∫ 0

t1

r(r(M)u)du = A(M).

Now in the general case (i.e. we do not assume that r(M) ≤ −M), we will prove
that

f(z(t)) > r(r(M)t) , ∀ t ∈ (−1, 0). (3.3)

To do this, we first show that z′(t) > r(M) for all t ∈ (−1, 0). Indeed, if z(t−1) > 0
then, by Lemma 2.1, z′(t) = f(z(t − 1)) > r(z(t − 1) ≥ r(M). On the other hand,
if z(t − 1) ≤ 0 then z′(t) = f(z(t − 1)) ≥ 0 > r(M). Hence,

z(t) = −
∫ 0

t

z′(s)ds < −
∫ 0

t

r(M)ds = r(M)t , t ∈ (−1, 0).

To obtain (3.3) we only have to note that f(z(t)) > r(z(t)) > r(r(M)t)) if z(t) > 0
and f(z(t)) ≥ 0 > r(r(M)t)) if z(t) ≤ 0.

Now, using (3.3), we obtain

m = z(1) =
∫ 1

0

f(z(s − 1))ds >

∫ 1

0

r(r(M)(s − 1))ds = B(M).
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Finally, applying Jensen’s integral inequality (see [15, p. 110]) , we have

m > B(M) =
1

r(M)

∫ 0

−r(M)

r(s)ds ≥ r(−r(M)/2).

This completes the proof.

As a consequence of Lemma 2.6 and Lemma 3.2, we obtain that R(m), r(m) and
r(r(−r(M)/2)) are well-defined and that R(ν,+∞) ⊂ (ν,+∞) for suitable values
of f ′(0):

Corollary 3.3.We have m > µ, r(−r(M)/2) > µ if f ′(0) ∈ [−1.5, 0) and m > ν if
f ′(0) ∈ [−1.5,−1.25].

Proof. Indeed, for f ′(0) ∈ (−2, 0) and f ′′(0) > 0, we have

m > r(−r(M)/2) > r(−r(+∞)
2

) =
(f ′(0))3

f ′′(0)(1 − f ′(0))
≥ 2f ′(0)

f ′′(0)
= µ.

Next, −A′(0) = −(f ′(0) + 0.5) ≤ 1 for f ′(0) ≥ −1.5, and Lemmas 2.6, 3.2 lead to
the estimate

m > D(+∞) = B(+∞) ≥ R(+∞) = −A′(0)ν ≥ ν.

This proves the corollary.

Lemma 3.4. Let f ′(0) ∈ [−1.5, 0). We have M < r(m). Moreover, if f ′(0) ∈
[−1.5,−1.25] then M < R(m).

Proof. We have that r(m) is well defined and [m,+∞) ⊂ [µ,+∞) since f ′(0) ∈
[−1.5, 0) (see Corollary 3.3). Take now θ ∈ ω(γ) such that y(t) = y(t, θ) satisfies
y(1) = M and, consequently, y′(1) = y(0) = 0. First we prove that f(y(s)) < r(m)
for s ∈ [−1, 0] and f ′(0) ∈ [−1.5, 0). Indeed, we have f(y(s)) < r(y(s)) ≤ r(m) if
y(s) < 0 and f(y(s)) ≤ 0 < r(m) if y(s) ≥ 0. Thus

M = y(1) =
∫ 1

0

f(y(s − 1))ds <

∫ 1

0

r(m)ds = r(m).

Now, if f ′(0) < −1 then r(m) > −m, from which it follows that t2 = m(r(m))−1 ∈
(−1, 0]. Next, x(t) = r(m)t, with t ∈ [t2, t2 + 1], is the solution of the initial value
problem x(s) = m, s ∈ [t2 − 1, t2] for Eq. (3.1). Now we only have to argue as in
the proof of Lemma 3.2 to obtain the inequality M < A(m). Finally, by Lemma 2.4
and Corollary 3.3, we obtain M < A(m) < R(m) when f ′(0) ∈ [−1.5,−1.25].

Remark 3.5. Assume that (f(x) − f ′(0)x)x > 0 for all x �= 0. Replacing r(x)
with r1(x) = f ′(0)x in the proof of Lemma 3.2, we can observe that it still works
without any change if we set A(M) = (f ′(0) + 1/2)M and B(M) = −(f ′(0))2M/2.
The same observation is valid for the proof of Lemma 3.4 (up to the last sentence
beginning from the word “Finally”). Therefore, under the above assumption, we
have m > A(M) = (f ′(0) + 1/2)M and M < A(m) = (f ′(0) + 1/2)m once f ′(0) ≤
−1. Also m > B(M) = −(f ′(0))2M/2 and M < r1(m) = f ′(0)m if f ′(0) < 0.

Proof of Theorem 1.3. We will reach a contradiction if we assume that m < 0 < M .
Suppose first that f ′′(0) > 0. If f ′(0) ∈ (−1.5, 0), in view of Lemmas 3.2, 3.4 and
Corollary 3.3 we obtain that M < r(m) ≤ r ◦ r(−r(M)/2) = λ(M) with the
rational function y = λ(x). Now, λ(M) < M for M > 0 if λ′(0) = (1/2)|f ′(0)|3 <
1. Therefore, if f ′(0) ∈ [−1.25, 0) we obtain the desired contradiction under the
assumption M > 0.
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Now let f ′(0) ∈ [−1.5,−1.25] and, consequently, R′(0) = f ′(0)+0.5 ∈ [−1,−0.75].
In this case Corollary 2.7, Lemma 3.2 and Lemma 3.4 imply that M < R(R(M)).
As R ◦ R(x) ≤ x for all x > 0 whenever (R ◦ R)′(0) = (R′(0))2 ≤ 1, we obtain
a contradiction again. Therefore the solution x(t) ≡ 0 of Eq. (1.1) is globally
attracting if f ′′(0) > 0 and f ′(0) ∈ [−1.5, 0).

Assume now that f ′′(0) < 0. The change of variables y(t) = −x(t) transforms
(1.1) into y′(t) = g(y(t − 1)) with g(x) = −f(−x). It is easily seen that g′′(0) > 0
and that g satisfies all properties from (H) (note that by Corollary 2.2, g is bounded
below). Applying now the first part of the proof to the modified equation y′(t) =
g(y(t−1)), we reach the same contradictions if we assume that m < 0 < M . Hence
our theorem is also proved when f ′′(0) < 0. Note that this change of variables
transforms the cases (f), (g) and (h) from Fig. 1 into (b), (c) and (e) of the same
figure respectively.

Finally, take f ′′(0) = 0. In this case, x = 0 is an inflexion point for f and
(f(x)− f ′(0)x)x > 0 if x �= 0. Therefore it is natural to employ the linear function
r1(x) = f ′(0)x instead of the rational function r(x) used in the case f ′′(0) >
0. Now, by Remark 3.5 we have that m > A(M) = (f ′(0) + 1/2)M and M <
A(m) = (f ′(0) + 1/2)m if f ′(0) ∈ [−1.5,−1). Hence M < (f ′(0) + 1/2)2M ≤ M ,
a contradiction. Let now f ′(0) ∈ [−1, 0). By the same Remark 3.5 we obtain that
m > B(M) = −(1/2)(f ′(0))2M > −(1/2)(f ′(0))3m. Thus −(f ′(0))3/2 > 1, a
contradiction.
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