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We analyze the stabilization of an unstable periodic orbit (UPO) by periodic prediction-based control
(PBC). We rigorously prove that, for 2-periodic orbits, a pulse strategy reduces the necessary control
strength to stabilize the UPO. Moreover, we find that in some cases the periodic control prevents some
undesirable effects induced by the PBC method. In this way, we provide an example of a dynamic
Parrondo’s paradox: the switching between two undesirable dynamics results in a nicely periodic
dynamic behavior.
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1. Introduction

Control of chaotic behavior has become a very important issue
in many areas [1]. In this Letter, we further develop the under-
standing and analytic insight into prediction-based control (PBC)
of chaos introduced by Ushio and Yamamoto [2]. In particular, we
deal with the stabilization of an unstable periodic orbit of a chaotic
one-dimensional discrete dynamical system

xn = f (xn−1), n = 1,2, . . . , (1.1)

when PBC is applied periodically, in the form of pulses.
Periodic control schemes have been proposed for (1.1) using

various control techniques, including proportional feedback control
[3–6], and delayed feedback control [7–10]. We are particularly in-
terested in biological control, where pulse strategies are especially
important; for example, due to seasonal interventions in popu-
lation dynamics, periodic migrations, or climatic periodic signals
[11–13].

The analysis of pulse stabilization using PBC was initiated in
[14]; the main conclusion is that, if K is a fixed point of f and
f ′(K ) < −1, then, for an arbitrary period m > 0, there is an open
real interval Im such that, for any α ∈ Im , K is asymptotically stable
for the pulse scheme

xn =
{

f (xn−1), if n /∈ mN,

f (xn−1) − α( f (xn−1) − xn−1), if n ∈ mN.
(1.2)
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However, the interval Im gets smaller as m increases, and the
length of Im tends to zero as m tends to infinity.

In this Letter, we study the periodic stabilization of nontrivial
periodic orbits of (1.1) based on the PBC method. Contrary to what
happens with unstable fixed points, for stabilizing a 2-cycle the
pulse scheme requires less control strength than the classic PBC
method.

Moreover, we show that the pulse scheme may avoid some
undesirable effects induced by the control; indeed, in some sit-
uations, the control action stabilizes a periodic orbit but, at the
same time, it gives rise to a new positive equilibrium in such a
way that initial conditions below this point are driven to zero by
the controlled system. In population dynamics, this type of behav-
ior is referred to as an Allee effect [15,16]; Allee effects increase
the risk of extinction and thus they are crucial in conservation and
management. The possibility of PBC to lead to Allee effects has al-
ready been reported in [17].

We prove that a 2-periodic control keeps the stabilization prop-
erties and prevents the Allee effect. Since the pulse scheme can be
seen as a periodic switching between the map f of the original
system and the controlled map, the beneficial effects of applying
the periodic feedback may be interpreted as a dynamic Parrondian
game [18]; that is to say, an alternation of different dynamics with
undesirable properties can give rise to a desirable dynamic.

As far as we know, the first extension of the famous Par-
rondo’s paradox to dynamical systems is due to Almeida et al.
[19] (see also [20]). There, the authors show that a combina-
tion of two chaotic systems may produce order; thus, they find a
“chaos + chaos = order” phenomenon analogous to the Parrondo’s
paradox “losing + losing = winning”. Our example goes in the line
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of the recent note [21], where it is argued that in some simple
population models a switching between two bad environmental
conditions may drive the population to a desirable behavior.

2. Results and discussion

2.1. Main results

We consider the prediction-based feedback control introduced
in [2]. The main idea of this method to stabilize an unstable T -pe-
riodic orbit

P = {p1, p2, . . . , pT }
of (1.1) consists of determining the control input un by the differ-
ence between the predicted states and the current states, that is,

un = −α
(

f T (xn) − xn
)
,

where α is a real parameter. Thus, the PBC scheme writes

xn = f (xn−1) − α
(

f T (xn−1) − xn−1
)
. (2.1)

The absolute value of α represents the control strength, and the
term f T (xn) is used as a prediction of xn+T . As usual, f T denotes
the corresponding power of f under composition, that is,

f T = f ◦ · · · ◦ f︸ ︷︷ ︸
T

.

It is clear that P is also a T -periodic orbit of (2.1). By as-
sumption, the multiplier d = f ′(p1) f ′(p2) · · · f ′(pT ) satisfies the
inequality |d| � 1, and a sufficient condition for the local asymp-
totic stability of P in the controlled system for a given value of α
is∣∣g′

α(p1)g′
α(p2) · · · g′

α(pT )
∣∣ < 1, (2.2)

where gα(x) := f (x) − α( f T (x) − x).
We propose the periodic prediction-based control scheme

xn =
{

f (xn−1), if n /∈ TN,

f (xn−1) − α( f T (xn−1) − xn−1), if n ∈ TN.
(2.3)

Again, we immediately check that P is a T -periodic solution of the
periodic difference equation (2.3). Moreover, its stability properties
depend on the period map hα = gα ◦ f T −1, as the following result
shows.

Proposition 2.1. Let P = {p1, p2, . . . , pT } be a T -periodic orbit of (1.1).
If |h′

α(pi)| < 1 for some i ∈ {1,2, . . . , T }, then P is locally asymptoti-
cally stable for the pulse scheme (2.3).

We prove Proposition 2.1 in Appendix A.
For the case T = 2, we find the set of real values α for which

(2.3) is asymptotically stable, and we prove, using Proposition 2.1,
that the periodic scheme works better than the usual PBC method
in the following sense: if (2.1) stabilizes {p1, p2} for some α ∈ R,
then (2.3) also stabilizes {p1, p2} for the same value of α. We need
to impose an additional condition, but we demonstrate that this is
not a restriction for many usual maps f (see Propositions A.1, A.2
and A.3 in Appendix A).

In the next subsection, we present an example that illustrates
these results and points out other advantages of using a periodic
control scheme. In the light of the example, we discuss a dynamic
Parrondo’s paradox associated to prediction-based control.
Fig. 1. Graphs of f (x) = 2.5x/(1 + x5) (dashed line) and gα(x) = f (x)−α( f 2(x)− x)
(solid line) for α = 0.35. The 2-cycle {p1, p2} is stabilized by the control (2.5), but a
new fixed point K1 of gα appears, giving place to an Allee effect: initial conditions
below K1 are driven to zero by gα .

2.2. Case study

Consider a pulse scheme to stabilize a 2-periodic orbit of the
generalized Beverton–Holt map [22]

f (x) = 2.5x

1 + x5
. (2.4)

The map f is chaotic, and has an infinite number of unstable
periodic orbits. We aim to stabilize the 2-periodic orbit {p1, p2} =
{0.5864,1.3714}, with f ′(p1) f ′(p2) = −2.1245. We begin applying
the PBC scheme (2.1), that can be written in the form

xn = gα(xn−1), (2.5)

where gα(x) = f (x) − α( f 2(x) − x). We can check that {p1, p2} is
stabilized by (2.5) if

α ∈ D1 = (−0.6044,−0.3789) ∪ (0.3039,0.5294). (2.6)

However, for α > 0, a drawback of this method is that the control
(2.5) makes the trivial equilibrium asymptotically stable. Indeed,

g′
α(0) = f ′(0) − α

(
f ′(0)2 − 1

)
< 1 ⇐⇒ α >

1

1 + f ′(0)
,

(2.7)

and therefore (2.5) displays a strong Allee effect if α > 2/7 =
0.285714. For these values of α, the map gα has two positive
fixed points K1, K2, where K2 is a fixed point of f but K1 is not.
The new equilibrium K1 represents a threshold population den-
sity below which the population growth is negative, resulting in
extinction [16].

For α ∈ (0.3039,0.5294), system (2.5) exhibits bistability: the
stable 2-periodic point {p1, p2} coexists with the stable fixed point
x = 0. Hence, a good effect of the control intervention is the sup-
pression of chaos and stabilization of a 2-periodic orbit. However,
the pitfall is that, while a population model governed by f is per-
manent (the chaotic attractor is bounded away from zero), this
property is lost when we apply the PBC method: an Allee effect
causes extinction for low population densities.

In Fig. 1, we show the graph of gα for α = 0.35, which has
the 2-periodic attractor {p1, p2} and the fixed points K0 = 0, K1 =
0.2854, K2 = 1.0844. The interval (0, K1) is the basin of attraction
of K0. This situation of bistability is observable in the bifurcation
diagram plotted in Fig. 2(a).

Now we apply the periodic scheme (2.3) with T = 2, that is,

xn =
{

f (xn−1), if n /∈ 2N,

g (x ), if n ∈ 2N.
(2.8)
α n−1
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Fig. 2. Bifurcation diagrams of the controlled systems with and without pulses for α ∈ [0,1]. (a) corresponds to the control scheme (2.5): even when it is stable, the 2-
periodic orbit coexists with the attracting trivial equilibrium; (b) corresponds to the periodic control (2.8): the 2-periodic orbit of f seems to be globally attracting for
α ∈ (0.2278,0.3828). The systems are iterated 400 times for a random initial condition x0 ∈ [0,2], and only the last 20 iterations are plotted. The values of α are picked up
on the interval [0,1], with a step ε = 0.0005.
Fig. 3. Graphs of f (x) = 2.5x/(1 + x5) (dashed line) and the period map hα(x) =
gα( f (x)) (solid line) for α = 0.35. p1 is a stable fixed point of hα and therefore
the periodic scheme (2.8) stabilizes the 2-cycle {p1, p2} of f . In this case, the sys-
tem is permanent under the control scheme (hence, the Allee effect is prevented).
Moreover, our numerical experiments suggest that {p1, p2} attracts all positive ini-
tial conditions except the equilibrium.

Using Proposition A.1, we know that (2.8) stabilizes {p1, p2} for

α ∈ D = (−0.7434,−0.2675) ∪ (0.2278,0.6331).

We check that D contains the set D1 given in (2.6), in agreement
with Proposition A.2. On the other hand, the equilibrium x = 0 is
asymptotically stable for the period map hα = gα ◦ f if h′

α(0) < 1,
which is equivalent to α > 1/ f ′(0). Comparing this condition with
(2.7), it is clear that the Allee effect is induced in the periodic
scheme for larger values of α than in the control applied at every
step.

For our case study, in contrast with (2.5), system (2.8) sta-
bilizes the 2-periodic orbit {p1, p2} and is permanent for α ∈
(0.2278,0.4). Moreover, the 2-periodic cycle {p1, p2} seems to at-
tract every positive initial condition different from the equilibrium
K2 for α ∈ (0.2278,α∗), where α∗ ≈ 0.3828; see the bifurcation
diagram in Fig. 2(b). Fig. 3 shows the graph of the period map hα

for α = 0.35. The strong Allee effect observed in the PBC scheme
(2.5) is prevented; instead, there is a robust 2-periodic global at-
tractor.

This example shows how a pulse strategy can be beneficial: on
the one hand, the control strength necessary to stabilize the 2-
periodic orbit using the periodic scheme (2.8) is smaller than the
corresponding one for the usual PBC control (2.5). On the other
hand, the periodic control helps to prevent undesirable effects of
the usual PBC control. This phenomenon can be interpreted as a
dynamic Parrondian game, that is, the combination of two dynam-
ics which yield undesired behaviors can give rise to a desirable
behavior. Namely, in our example, we find the following situation
for a range of values of the control parameter α:

• the dynamics of f is not good because it has a chaotic at-
tractor. This fact means that long-term predictions are not
possible;

• the dynamics of gα are also not good because they exhibit an
Allee effect. In population models, this effect induces a risk of
extinction;

• the compositions hα = gα ◦ f resulting from switching be-
tween f and gα exhibit good dynamics, because the system
has a 2-periodic global attractor.

As argued in [23], paradoxical outcomes of the combination of two
component systems rely on hidden correlations between them; in
our example, the switch between f and gα keeps the stability of
the 2-periodic orbit {p1, p2} and prevents the stabilization of the
trivial equilibrium, thus avoiding the Allee effect.

In summary, we found a new and interesting example of Par-
rondo’s paradox in nonlinear dynamics; for related results, see
[19–21,23] and references therein.

3. Conclusions

Quoting Williams and Hastings [23], “counterintuitive dynamics
of various biological phenomena occur when composite system dynam-
ics differ qualitatively from that of their component systems”. If the
composition of two undesirable dynamics results in a desirable
outcome, then the resulting dynamic is referred to as a dynamic
Parrondo’s paradox [18–20]. In the recent note [21], Peacock-López
pointed out that a periodic pulse technique for controlling chaos
may be described as a Parrondian game. In this direction, we
have found an illustrative example while exploring a periodic
prediction-based control. This finding underlines the importance
of improving the analytic insight into different methods of chaos
control, one of the issues emphasized by Schöll and Schuster in
the preface of the Handbook of Chaos Control [1].

The findings of this Letter are especially relevant in control of
chaotic populations, since one of the aims of control in populations
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is preventing extinction [11,24]. We showed that PBC may sup-
press chaos by stabilizing a 2-periodic cycle, but, at the same time,
it may induce an Allee effect, and therefore a high risk of ex-
tinction if population density falls below a threshold level. The
important and somehow paradoxical message of our study is that
the use of a periodic control, instead of intervention at every step,
may solve this drawback. Actually, a combination of two dynamics
with a high risk of extinction can lead to a robust 2-periodic at-
tractor. Notice that, since the convergence seems to be global, the
periodically controlled system should remain permanent even in
the presence of noise.

An additional and surprising conclusion is that the necessary
control strength to stabilize a 2-periodic orbit is smaller with a
pulse strategy. Thus, the control effort is reduced in two directions:
decreasing both the strength and the frequency of interventions.
We defined the control strength as the absolute value of the con-
trol parameter α; a different way of measuring the control effort
consists of estimating the cost in terms of interventions, that is,
the amount of the state variable added or removed over a number
of generations. This aspect has been investigated in [25] for var-
ious control methods aiming to stabilize the positive equilibrium
of a Ricker map. Extending this study to nontrivial periodic orbits
and pulse strategies is an interesting future direction.

Finally, we stress the fact that our findings are supported by rig-
orous mathematical results (proved in Appendix A), and that they
apply to a wide class of relevant families of one-dimensional maps
usually employed in mathematical modeling.
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Appendix A

In this appendix we state and prove the stability results dis-
cussed in Section 2. We begin with the proof of Proposition 2.1.

Proof of Proposition 2.1. Recall that gα(x) = f (x) − α( f T (x) − x)
and hα(x) = gα( f T −1(x)).

Any solution {xn} of the pulse scheme (2.3) satisfies that xnT =
hn
α(x0) and xnT +i = f i(hn

α(x0)), for all n � 1 and i = 1,2, . . . , T − 1.
Moreover, hα(pi) = pi for all i = 1,2, . . . , T .

Without restricting the generality, we suppose that |h′
α(p1)| <

1. Then p1 is a local attractor fixed point for the system yn+1 =
hα(yn), and every solution {xn} of (2.3) with x0 belonging to the
attraction basin of p1 satisfies

lim
n→∞ xnT = p1,

lim
n→∞ xnT +i = lim

n→∞ f i(xnT ) = f i
(

lim
n→∞ xnT

)
= f i(p1) = pi+1,

for all i = 1,2, . . . , T −1. Hence the T-periodic orbit {p1, p2, . . . , pT }
is attracting for the pulse scheme (2.3). By a well-known result
(see, e.g., [26, Theorem 4.7, p. 182]), the T -periodic orbit is stable,
and therefore locally asymptotically stable. �

In the following, we consider the case T = 2. Thus, we assume
that {p1, p2} is an unstable 2-periodic orbit of f . As in the gen-
eral case, given α ∈ R, we denote gα(x) = f (x) − α( f 2(x) − x) and
hα(x) = gα ◦ f (x).

Hence, the periodic PBC scheme is
xn =
{

f (xn−1), if n /∈ 2N,

gα(xn−1), if n ∈ 2N.
(A.1)

First we use Proposition 2.1 to give the explicit values of α for
which (A.1) stabilizes {p1, p2}.

Proposition A.1. Assume that

f ′(p1) > 0 and f ′(p2) < 0. (A.2)

A parameter α ∈ R satisfies |h′
α(p1)| < 1 or |h′

α(p2)| < 1 if and only if

α ∈ D =
(

1

f ′(p2)
,

d + 1

f ′(p2)(d − 1)

)
∪

(
d + 1

f ′(p1)(d − 1)
,

1

f ′(p1)

)
,

where d = f ′(p1) f ′(p2) < −1.

Proof. Notice that

h′
α(p1) = g′

α(p2) f ′(p1) = (
f ′(p2) − α(d − 1)

)
f ′(p1)

= d − α f ′(p1)(d − 1), (A.3)

h′
α(p2) = g′

α(p1) f ′(p2) = (
f ′(p1) − α(d − 1)

)
f ′(p2)

= d − α f ′(p2)(d − 1). (A.4)

Since f ′(p1) > 0, we deduce from equality (A.3) that |h′
α(p1)| < 1

is equivalent to say that α ∈ ( d+1
f ′(p1)(d−1)

, 1
f ′(p1)

). On the other hand,
using that f ′(p2) < 0, we deduce from (A.4) that |h′

α(p2)| < 1 is
equivalent to say that α ∈ ( 1

f ′(p2)
, d+1

f ′(p2)(d−1)
). �

Our next result shows that if the classical PBC method stabilizes
{p1, p2} for some α ∈ R, and (A.2) holds, then (A.1) also stabilizes
{p1, p2} for the same value of α.

Proposition A.2. If (A.2) holds and α ∈ R satisfies |g′
α(p1)g′

α(p2)| � 1,
then α ∈ D.

Proof. First, we study the case α > 0. Since f ′(p1) > 0 and d �−1,
we obtain∣∣h′

α(p1)
∣∣ = ∣∣g′

α(p2) f ′(p1)
∣∣ <

∣∣g′
α(p2)

(
f ′(p1) − α(d − 1)

)∣∣
= ∣∣g′

α(p2)g′
α(p1)

∣∣ < 1,

and we deduce that α ∈ D by Proposition A.1.
It remains to consider the case α < 0. Using that f ′(p2) < 0

and d � −1, we get∣∣h′
α(p2)

∣∣ = ∣∣g′
α(p1) f ′(p2)

∣∣ <
∣∣g′

α(p1)
(

f ′(p2) − α(d − 1)
)∣∣

= ∣∣g′
α(p1)g′

α(p2)
∣∣ < 1,

and we obtain again from Proposition A.1 that α ∈ D . �
We conclude this appendix showing that for the family of S-

unimodal maps, that is, unimodal maps with negative Schwarzian
derivative (cf. [27, Definition 2]), condition (A.2) is not restric-
tive. We recall that this family of maps contains the generalized
Beverton–Holt map used in Section 2 and other usual functions
such as the quadratic family Q λ(x) = λx(1− x) and the Ricker fam-
ily Rλ,β(x) = λxe−βx . As already noticed by Singer [28], most of the
commonly studied one-dimensional maps are S-unimodal.

Proposition A.3. Assume that f is S-unimodal and {p1, p2} is an un-
stable 2-periodic orbit of f . Then condition (A.2) holds.

Proof. We can assume that f ′(p1) f ′(p2) �= 0 because otherwise
{p1, p2} is stable. Next, it is obvious that f ′(p1) > 0, f ′(p2) > 0 is
impossible for a 2-periodic orbit. Finally, suppose that f ′(p1) < 0,
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f ′(p2) < 0. Then f restricted to the invariant interval [p1, p2] is
a decreasing function, and it follows from [29, Theorem 1] that
{p1, p2} is attracting; thus we arrive at a contradiction that com-
pletes the proof. �
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