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Abstract

The aim of this notes is to bring together the results fruit of the
labor of a group of mathematicians (including the author) during
the last four years on the global asymptotic stability of a family of
scalar delay differential equations with a unique equilibrium. We
have obtained sharp conditions which generalize and unify many
existing ones in the topic. Finally, we formulate one conjecture
that also generalizes other classical ones.

1 Introduction

The object of study is a family of scalar functional delay differential
equations

x′(t) = −δx(t) + f(t, xt), (1.1)

where δ ≥ 0, and, as usual, for every t ≥ 0, xt denotes the element
of C def

= C[−h, 0], defined by xt(s) = x(t + s), s ∈ [−h, 0]. Here h >
0 is the delay parameter. For the general theory of functional delay
differential equations, we refer the reader to [6]. We will establish along
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the paper the conditions imposed on the functional f : R × C → R,
but we may anticipate some well-known examples which fall within our
considerations.

If f(t, φ) = f(φ(−h)), Eq. (1.1) reads

x′(t) = −δx(t) + f(x(t− h)). (1.2)

This equation is a general model in population dynamics known as de-
layed recruitment model [2, Section 3.3]; see also the classical reference
[23] in mathematical biology for more discussions. Roughly speaking,
x(t) represents the number of adult (sexually mature) members in a pop-
ulation at time t, δ is the per capita death rate, and f(x(t − h)) is the
rate at which new members are recruited into the population at time t
(h is the age at which members mature, and it is assumed that the birth
rate at a given time depends only of the adult population size). For
different meanings, see the interesting list in [7, p. 78], including models
in neurophysiology, metabolic regulation, and agricultural commodity
markets. The most famous models of this type are:

• The Nicholson’s blowflies equation proposed in [4] to explain the
oscillatory population fluctuations observed by A. J. Nicholson in
1957 in his studies of the sheep blowfly Lucilia cuprina:

x′(t) = −δx(t) + px(t− h)e−γx(t−h), δ, p, γ, h > 0. (1.3)

• The model for blood cell populations proposed by Mackey and
Glass in [19]

x′(t) = −δx(t) + p
x(t− h)

1 + [x(t− h)]n
, δ, p, h > 0, n > 1. (1.4)

• The model for the survival of red blood cells in an animal proposed
by Wazewska-Czyzewska and Lasota in [32]

x′(t) = −δx(t) + pe−γx(t−h), δ, p, γ, h > 0. (1.5)

When δ = 0 and f(t, φ) = f(φ(−1)), we have the “prototype equa-
tion for delayed negative feedback” (see [3, Chapter XV]),

x′(t) = f(x(t− 1)). (1.6)
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The most celebrated equation of this type is the Wright equation

x′(t) = p(e−x(t−1) − 1), p > 0, (1.7)

which comes after a change of variables from the delayed logistic equa-
tion

x′(t) = px(t)
(

1− x(t− h)
K

)
, p, h, K > 0. (1.8)

Other examples for Eq. (1.6) are the “food-limitation” model [29]
and the models exhibiting “Allee effect” [9, Section 4.6].

However, the first member of the family of equations (1.1) under our
study was the functional differential equation with maxima

x′(t) = −δx(t) + a max
s∈[t−h,t]

x(s) + f(t), (1.9)

where δ ≥ 0, a ∈ R, and f is a continuous T -periodic real function.
This equation appears as a model in automatic regulation (see [1] and
references therein). In [25], the homogeneous case of (1.9) is studied
in detail (see also [17]). In particular, the authors find the region of
the plane of parameters (δ, a) for which the trivial solution is globally
asymptotically stable. For the general case of f 6≡ 0, some sufficient
conditions were given in [1, 18, 25].

2 First theorem

Motivated by some results in [25], in the summer of 1999 we started to
work in the problem of finding a necessary and sufficient condition for
the existence of a globally asymptotically stable T -periodic solution to
(1.9). This problem was completely solved in [8], where the following
result was proved:

Theorem 2.1 Assume that f is continuous and there exists a < 0 such
that

a max
s∈[−h,0]

φ(s) ≤ f(t, φ) ≤ a min
s∈[−h,0]

φ(s), ∀φ ∈ C. (2.1)

If δ > 0 and

e−δh >
−a

δ
ln

(
a2 − aδ

a2 + δ2

)
(2.2)

then the zero solution of (1.1) is globally asymptotically stable. More-
over, this condition is sharp: for every triple (a, δ, h) which does not
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satisfy (2.2), there exists f satisfying (2.1) such that the equilibrium
x ≡ 0 in (1.1) is not asymptotically stable.

Remark 2.2 It is easy to see that if (1.9) has a unique T -periodic so-
lution q(t), then the study of the global asymptotic stability of q(t) is
equivalent by a change of variables to the study of the global asymptotic
stability of x ≡ 0 for an equation of the form (1.1) with f satisfying
(2.1).

Condition (2.1) was inspired by a celebrated work of J. A. Yorke [31].
In fact, modifying slightly our proofs, one can see that the conclusion of
Theorem 2.1 is still valid if we replace condition (2.1) by the following
weaker condition introduced in [31]:

aM(φ) ≤ f(t, φ) ≤ −aM(−φ), ∀φ ∈ C, (2.3)

where

M(φ) = max

{
max

s∈[−h,0]
φ(s), 0

}
. (2.4)

Condition (2.3) is often referred to as the Yorke condition [9, Section
4.5]. The work of Yorke establishes that under condition (2.3) and an
additional hypothesis which ensures that all monotone solutions con-
verging to a constant in fact should converge to zero, the trivial solution
of equation

x′(t) = f(t, xt) (2.5)

is globally asymptotically stable if

|a|h < 3/2. (2.6)

In fact, the limit form of (2.2) when δ → 0 is precisely (2.6), and thus
the Yorke result can be viewed as a limit case of Theorem 2.1.

Such Yorke’s result is known as 3/2-theorem (see, for example, [6,
Section 5.5] and [9, Section 4.5]), and it has two remarkable features:

• It is sharp: this character was established by A. Myshkis [24] in
1955 (see also the examples by J. Lillo in [10]), by studying the
linear equation with variable delay

x′(t) = ax(t− h(t)), a < 0. (2.7)
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It is clear that if 0 ≤ h(t) ≤ h, then f(t, φ) = aφ(−h(t)) satisfies
(2.3). Myshkis showed that it is possible to find h(t) such that
|a| suph(t) = 3/2 and Eq. (2.7) has nontrivial periodic solutions
(and hence x ≡ 0 is not globally asymptotically stable).

• Even in the linear autonomous case

x′(t) = ax(t− h), a < 0, (2.8)

constant 3/2 is very close to the constant π/2 for which Eq. (2.8)
losses its stability.

In Theorem 2.1, we extended these features to the case δ > 0: con-
dition (2.2) is sharp, and approximates exceptionally well the exact sta-
bility domain for the linear equation with constant coefficients and fixed
delay

x′(t) = −δx(t) + ax(t− h), δ > 0, a < 0. (2.9)

Indeed, in Fig. 1, we have depicted the local and global stability domains
using new coordinates (c, θ) = (−a/δ, exp(−δh)). Now, condition (2.2)
reads

θ > c ln

(
c2 + c

c2 + 1

)
,

and the solid curve in Fig. 1 represents the graph of function

F (c) = c ln((c2 + c)/(c2 + 1)), (2.10)

in such a way that Eq. (1.1) is globally asymptotically stable if θ > F (c).

On the other hand, the dashed line corresponds to the curve of
asymptotic stability for the linear equation (2.9). From [6, p. 135] we
know that the boundary of the region of stability of Eq. (2.9) is given
by

δ = a cos(z) ; −a sin(z) = z/h , z ∈ (π/2, π).

Hence we have (c, θ) = (−1/ cos(z), ez cot(z)), z ∈ (π/2, π), which is the
parametric curve shown in Fig. 1 (dashed line).

The sharp nature of our condition is one remarkable aspect of The-
orem 2.1, and it was established by studying the differential equation
with maxima (1.9) (see [8, Section 4]).
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Figure 1: Domains of global and local stability.

3 Second theorem

In spite of the interest of the Yorke theorem and our Theorem 2.1, to
be honest we have to notice that (2.3) is a kind of sublinearity condi-
tion (indeed, it implies that |f(t, φ)| ≤ −a‖φ‖, for all φ ∈ C), and these
results cannot be applied to the interesting cases of equation (1.1) men-
tioned in Section 1. Despite this fact, it is known from the work of E.
Wright in 1955 [33] that the 3/2- stability condition for the global asymp-
totic stability applies to the delayed logistic equation (1.7). Wright
proved that all solutions of this equation converge to zero as t → ∞
if p ≤ 3/2. Moreover, he affirms that, after considerable effort, his
method can be used to obtain the same conclusion with the condition
p ≤ 37/24 = 1.54 . . . (compare with the local asymptotic stability con-
dition p < π/2 = 1.57 . . .), so that the 3/2 condition is not exact for
the Wright equation. In fact, the famous Wright conjecture establishes
that the zero solution in Eq. (1.7) is globally asymptotically stable for
p < π/2. This conjecture still remains open (see [9, p. 125]).

However, we notice that, similarly to the Yorke result, the number
3/2 is exact for the nonautonomous case of the logistic equation (see
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[22, 28]).
This “magic number” was very attractive for us, and during the

year 2000 we devote some efforts to investigate the following question:
which are the properties of the Wright equation (1.7) that make possible
this correlation between local and global asymptotic properties of the zero
solution? In other words, can we extend the Wright 3/2-theorem to a
more general family of delay differential equations?

We notice that Eq. (1.7) has motivated a number of papers by many
specialists in the field: it is the most famous example of the family of
scalar delay differential equations (1.6). Very frequently, Eq. (1.6) is
investigated under the assumption of negative feedback:

(W1) f : R → R is continuous with f(0) = 0, differentiable at x = 0
with f ′(0) < 0, and for all x 6= 0, xf(x) < 0.

Also, examples from applications satisfy certain boundedness conditions,
and it is typically assumed that f is either bounded from above or from
below. See, for example, Chapter XV in [3], where the reader can find
very interesting historical notes and a good list of related references. We
will assume

(W2) f : R → R is bounded from below, that is, there exists k > 0 such
that f(x) > −k for all x ∈ R.

It is clear that (W1) and (W2) hold for the nonlinearity f(x) =
p(e−x − 1) in the Wright equation. Returning to our question on the
generalization of the Wright theorem, we note that the linearized equa-
tion of (1.6) at x = 0 is

x′(t) = f ′(0)x(t− 1), (3.1)

which is asymptotically stable if |f ′(0)| < π/2. Hence we are interested
in finding sufficient conditions on f such that the equilibrium is globally
attracting in (1.6) for |f ′(0)| < 3/2. The recent paper by Walther [30]
establishes, for every fixed p > 0, the existence of monotone nonlinear-
ities fp with |f ′p(0)| = p in such a way that (W1) and (W2) hold and
(1.6) has nontrivial periodic solutions.

Hence, we need an additional condition in order to have a 3/2-type
result. Motivated by the famous Singer results in one-dimensional dy-
namics (see [21, 26]), we consider unimodal functions with negative
Schwarz derivative, that is, we assume that f satisfies condition
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(W3) f ∈ C3(R,R), has at most one critical point x∗ ∈ R which is a
local extremum, and (Sf)(x) < 0 for all x 6= x∗, where

(Sf)(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

is the Schwarz derivative of f .

We note that the condition of the negative Schwarz derivative was
already used in the setting of delay differential equations of the form
(1.2) by Mallet-Paret and Nussbaum in [20]. Let us observe also that
number 3/2 appears again in this definition!

In [12] we prove the following result:

Theorem 3.1 Assume that f satisfies (W1), (W2), (W3), and |f ′(0)| ≤
3/2. Then the steady state solution x ≡ 0 in (1.6) is globally attracting.

Theorem 3.1 provides a new classification of delay differential equa-
tions of the form (1.6) for which the 3/2 theorem is valid. One of the
interesting features of this result is that conditions (W1)-(W3) are satis-
fied not only by the Wright equation (and therefore the Wright theorem
can be obtained as an immediate corollary) but also for other models
used in population dynamics, where the nonlinearity is more complicated
(see [12, Examples 1.4,1.5]).

4 Third theorem

There is a key contribution which is “hidden” in our paper [12]: one
can realize that we use conditions (W1)-(W3) to show that the graph of
the nonlinearity f in (1.6) is “dominated” by the graph of the rational
function r(x) = ax/(1 + bx) which coincides with f , f ′ and f ′′ at x = 0,
in the sense that

r(x) > f(x) > 0 , x ∈ (−1/b, 0) , and r(x) < f(x) < 0 , x > 0. (4.1)

Then, almost all arguments in the paper can be made using this prop-
erty instead of conditions (W1)-(W3). This fact suggests that this is
the essential characteristic of the nonlinearity f in the Wright equation
which permits to extend the 3/2 result to other nonlinearities. More-
over, setting µ(x) = max{x, 0}, x ∈ R, the inequalities in (4.1) can be
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written in the following form:

r(µ(x)) =
aµ(x)

1 + bµ(x)
< f(x) <

−aµ(−x)
1− bµ(−x)

= r(−µ(−x)), (4.2)

where the first inequality holds for all x ∈ R, and the second one for all
x > −1/b.

Next, let us observe that µ is the scalar version of the Yorke func-
tional M defined in (2.4), and hence for b = 0 condition (4.2) is very
similar to the Yorke condition (2.3). This remark suggests the idea of
unifying the Yorke and Wright 3/2–theorems by using a generalized form
of (4.2). We did it in [14], where we proved the

Theorem 4.1 Assume that f satisfies the following three hypotheses

(H1) f : R×C → R satisfies the Carathéodory condition (see [6, p. 58]).
Moreover, for every q ∈ R there exists g(q) ≥ 0 such that f(t, φ) ≤
g(q) a.e. on R for every φ ∈ C satisfying the inequality φ(s) ≥
q, s ∈ [−h, 0].

(H2) There exist a < 0, b ≥ 0 such that

aM(φ)
1 + bM(φ)

≤ f(t, φ) ≤ −aM(−φ)
1− bM(−φ)

, (4.3)

where the first inequality holds for all φ ∈ C, and the second one
for all φ such that mins∈[−h,0] φ(s) > −1/b. Here, M(φ) is the
Yorke functional defined in (2.4).

(H3)
∫+∞
0 f(s, ps)ds diverges for every continuous p(s) having nonzero

limit at infinity.

If either b > 0 and |a| ≤ 3/2, or b = 0 and |a| < 3/2 then all solutions
of Eq. (2.5) converge to zero as t →∞.

Condition (H3) plays a similar role to the condition required by Yorke
in his 3/2–theorem in order to ensure that the unique constant limit of
the monotone solutions of (2.5) is zero. We have modified it a little
bit since we allow f to be discontinuous. We notice that, in particular,
it implies that x ≡ 0 is the unique equilibrium in (2.5). Next, for
b = 0, condition (4.3) is the Yorke condition (2.3). In this case, (H1) is
satisfied automatically with g(q) = −aµ(−q). Hence the Yorke theorem
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is a particular case of our Theorem 4.1. Moreover, Theorem 3.1 (and
therefore the Wright theorem) is also a consequence of Theorem 4.1.
Hence we succeed in unifying these two classical results.

Constant 3/2 in Theorem 4.1 is the best possible both for b = 0 (by
the mentioned results of Myshkis), and for b > 0 (this can be shown
by the example of the nonautonomous logistic equation mentioned in
Section 3).

As it is shown in [14], Theorem 4.1 allows to obtain 3/2 stability
conditions for the global asymptotic stability of very general forms of
logistic-type equations, improving many previous results in the litera-
ture.

5 Fourth theorem

In our opinion, one of the key ideas in our paper [14] is the introduction
of the generalized Yorke condition (4.3). If we consider Eq. (1.1) (and
its particular case (1.2)), this condition is satisfied for the nonlinearity
in the interesting models of Nicholson, Mackey-Glass, Wazewska-Lasota,
etc., even allowing the consideration of variable delays and variable co-
efficients in these equations. Therefore, it makes sense trying to prove
a generalization of Theorem 4.1 to the general case of Eq. (1.1). In
[15] we complete our program showing that condition (2.2) introduced
in Theorem 2.1 is valid to ensure the global asymptotic stability in a
larger family of delay differential equations.

Theorem 5.1 Assume that f satisfies conditions (H1) and (H2) in the
statement of Theorem 4.1. If (2.2) holds, then all solutions of Eq. (1.1)
converge to zero as t →∞.

It is important to recall here that this result applies to Eq. (1.2)
with f satisfying conditions (W1)-(W3). In this case, a = f ′(0) < 0 and
b = −f ′′(0)/(2f ′(0)).

Remark 5.2 Roughly speaking, the main tool in the proofs of our four
theorems is the analysis of some related one-dimensional maps, obtained
by the integration of some comparison equations. This idea was first de-
veloped by I. Györi and S. Trofimchuk in [5], where a first approximation
to condition (2.2) was obtained for Eq. (1.2). The improvement of this
condition up to (2.2) required the analysis of some complicated maps;
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for example, a function G(x) = G(x, δ, a, h) defined implicitly by

e−δh =
∫ G(x)

r(x)

dt

r−1(t)− r(x)
,

where r(x) = ax/(1 + x), and r−1(x) = x/(a− x) is its inverse.
We also notice here that the ideas of [5] were adapted to investigate

the global asymptotic stability of equations with infinite delay in [11].

6 The conjecture

In the particular case of Nicholson’s blowflies equation (1.3), H. Smith
[27] proposed the problem of studying if the positive equilibrium in (1.3)
attracts all positive solutions for all values of the parameters for which
it is locally asymptotically stable. By a change of variables, and using
some estimations for the global attractor of (1.3) given in [5], we can
apply Theorem 5.1 to obtain for this equation the surprisingly closeness
between the regions of local and global asymptotic stability showed in
Fig. 1 (see [15, Section 2] for more details). Hence, our theorem not only
supports this conjecture, but also our estimation is the best possible for
Eq. (1.3) with variable delays h(t), 0 ≤ h(t) ≤ h.

Since our results are valid for the general case of Eq. (1.2) with f
satisfying conditions (W1)-(W3), we propose the following conjecture,
which is more general than the Smith conjecture; note also that the
celebrated Wright conjecture can be viewed as a limit case of it.

Conjecture 6.1 Under conditions (W1)-(W3), the trivial solution of
Eq. (1.2) is globally attracting if it is locally asymptotically stable.

We formulated this conjecture in [13], before proving our Theorem
5.1, and, even with the support of this result, we have tried to disprove
it. Indeed, looking more closely at Fig. 1, one notices a “qualitative
discrepancy” between the curves of local and global stability near the
point (c, θ) = (1, 0), which corresponds to the limit case when h → ∞
and c = |f ′(0)/δ| = 1.

In order to have a “global vision” of Fig. 1 at this point, let us observe
that Eq. (1.2) is transformed via the change of variables y(s) = δx(ht)
into the “singularly perturbed equation” (see [20])

εy′(s) = −y(s) +
1
δ
f(y(s− 1)), (6.1)
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where ε = 1/h. Hence, the limit case θ = 0 corresponds to ε = 0, that
is, to the difference equation

y(s) =
1
δ
f(y(s− 1)). (6.2)

It is well known that under conditions (W1)-(W3) all solutions of
(6.2) tend to zero as s →∞ if and only if

c = |f ′(0)/δ| ≤ 1. (6.3)

In fact this condition represents the “absolute stability condition” for
Eq. (1.2) under conditions (W1)-(W3), that is, if (6.3) holds then the
equilibrium x = 0 in (1.2) is globally attracting for all values of the delay
h. Therefore, the curve of global stability given by function F defined
in (2.10) is continued at c = 1 by the line θ = 0, 0 ≤ c ≤ 1. However,
while the curve of local asymptotic stability has C∞-contact with the
horizontal line at (1, 0), we can check that F ′(0) = 1/2, and hence the
contact with the axis is not C1. This difference led us to question the
veracity of Conjecture 6.1. However, as a support of this conjecture,
we proved in [16] that for every function f satisfying (W1)-(W3) there
exists η = η(f) > 0 such that Eq. (1.2) is globally asymptotically stable
if 0 ≤ c − 1 ≤ η and δh < K(c − 1)−1/8, where K = K(f) > 0. In
particular, this shows that in the plane (c, θ) the optimal curve of global
stability for Equation (1.2) with f satisfying (W1)-(W3) has slope zero at
c = 1, giving in this way an additional support to the above conjecture.
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