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Abstract. We consider a family of difference equations used in population dynamics.
First we recall the most relevant results concerning the global stability of the positive
equilibrium. Then, using the survival rate as a parameter, we investigate the changes
in the dynamics when it ranges between zero (semelparous populations) and one.
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1. Introduction

The aim of this paper is the study of different aspects of the dynamics of the difference
equation

xn+1 = αxn + (1 − α)h(xn−k), (1.1)

where α ∈ [0, 1), k ≥ 1 is an integer, and h : [0,∞) → [0,∞) is a continuous function.
The motivations for our interest in Eq. (1.1) are mainly two:
First, this equation was proposed by K. R. Allen in 1963 to model whale popula-

tions. Since it was popularized by Clark in 1976 [5], it is often referred to as Clark’s
delayed recruitment model (see also [4, 17, 34] and references therein). In this context,
xn represents the number of adult (sexually mature) members of the population in
the year n, α ∈ [0, 1) is the annual survival rate, and f = (1 −α)h is the recruitment
function, which is in general a nonlinear function of the size of population of adults a
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number of k years before. We refer to [13] for more details. We notice that the limit
case α = 0 in (1.1) reads

xn+1 = h(xn−k), (1.2)

which is usually used to model semelparous populations, characterized by the fact
that individuals reproduce only once and die afterwards (see, e.g., [6, 8, 10]). Two
famous examples are Pacific salmon [10] and magical cicadas (see Chapter 6 in [6] and
references cited therein). These special cicadas emerge to the ground during a short
period among two weeks and two months for mating and lying eggs every 13 or 17
years, and then they die. Recently, equation (1.2) has also attracted some attention
from the point of view of its periodic structure (see [2, 9, 23, 31]).

The second motivation to study Eq. (1.1) is that it can be considered as the
discretized version of the following well known delay differential equation used in
mathematical biology:

x′(t) = −x(t) + h(x(t − τ)), τ > 0. (1.3)

In fact, an application of Euler’s explicit method with discretization step δ = τ/k leads
to equation (1.1) with α = 1− δ (see, e.g., [26]). Many of the results in the literature
concerning Eq. (1.1), in particular with regard to the stability of the equilibria, were
motivated by this fact (see, e.g., [15, 18, 21, 24, 26, 27, 40]).

2. The choice of the recruitment function

In relation to Clark’s model, several stock-recruitment functions have been suggested
in the literature. Perhaps the most popular are the following:

• The Ricker function [4, 36]: h(x) = pxe−γx, p > 1, γ > 0.

• The Shepherd function [34, 38]: h(x) =
ax

1 + xn
, a > 1, n > 0.

• The Beddington-May function [3, 17]:

h(x) = x
[

1 + q
(

1 −
( x

K

)z)]

+
,

where q, K, z > 0, [x]+ = max{x, 0}.

All these nonlinearities share the common property to have a unique positive
equilibrium and a unique local maximum (such maps are usually called unimodal).
We emphasize that Eq. (1.1) with the Ricker nonlinearity is also the discretized
version of the famous Nicholson’s blowflies delay differential equation proposed in
[19]. The same remark applies to Shepherd’s function and the celebrated Mackey-
Glass equation [33].

Some decreasing nonlinearities were also suggested as recruitment functions; we
mention h(x) = pe−γx, p > 0, γ > 0, and h(x) = a/(1 + xn), a > 0, n > 0, which
correspond to discrete versions of models in hematopoiesis, see, e.g., [27, Section
4.6]).
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In order to include the models cited above, we will consider throughout the paper
that the recruitment function meets the following assumption:

Assumption 2.1. h : [0,∞) → [0,∞) is continuous and has a unique fixed point x̄.
Furthermore, 0 < x < h(x) for 0 < x < x̄, and h(x) < x for x > x̄.

We notice that some of the results included here can be proved under more general
assumptions (see, e.g., [12, 13, 16]).

We recall that in most usual models, function h is either decreasing or unimodal,
and some relevant papers in the literature of Eq. (1.1) only consider these cases.

Due to biological reasons, only nonnegative initial conditions will be considered;
more precisely, the set of admissible initial conditions is defined by

S = {(x−k, . . . , x−1, x0) ∈ R
k+1 : xi ≥ 0, i = −k, . . . , 0, x0 > 0}.

Solutions of (1.1) corresponding to admissible initial conditions will be called admis-
sible solutions. A simple induction argument shows that, if α > 0, then for any
admissible initial condition, the corresponding solution {xn} of (1.1) is well defined
and satisfies xn > 0 for all n ≥ 0. Moreover, admissible solutions are permanent; more
precisely, there exist positive constants A, B such that, for any admissible solution
{xn} of (1.1) there exists an integer N > 0 such that

0 < A ≤ xn ≤ B , ∀n ≥ N.

For a proof, see [12, Proposition 4.6]. Related results can be found in [16, 21, 24, 27],
among others.

3. Stability of the positive equilibrium

Let x̄ be the positive equilibrium of (1.1). Linearization of (1.1) at x̄ gives equation

xn+1 = αxn + (1 − α)h′(x̄)xn−k.

It is well known that x̄ is asymptotically stable if all solutions of the associated
characteristic equation

λk+1 − αλk − (1 − α)h′(x̄) = 0 (3.1)

lie in the unit open disk of the complex plane. Necessary and sufficient conditions
for this to happen can be found in [29, 35], see also [13]. Clark himself proved that
|h′(x̄)| < 1 is a sufficient condition for the local asymptotic stability of x̄. In fact,
this condition can be improved to |h′(x̄)| ≤ 1 if α > 0, and it is the best asymptotic
stability condition independent of the size of the delay k (this is usually called absolute
stability).

Numerical experiments suggest that in some of the considered models the local
asymptotic stability of the equilibrium implies its global stability. See related conjec-
tures in [15, 16, 21, 40]. Although this is still an open problem, sufficient conditions
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for the global asymptotic stability were found by many authors (see [11, 12, 15, 16,
18, 21, 24, 26, 27, 28, 40] and other references cited therein).

We recall some of the most relevant results in this direction. As usual, we say
that x̄ is a global attractor for (1.1) if all admissible solutions converge to x̄ as n → ∞.
On the other hand, x̄ is called globally stable if it is a stable global attractor.

Starting with the absolute stability, it is a remarkable fact that x̄ is globally stable
for all values of k whenever it is a global attractor for the discrete dynamical system
generated by the iteration

xn+1 = h(xn). (3.2)

Results in this direction were proved by Fisher [17], Karakostas et al. [26] and
Ivanov [24]. A result more appropriate to include nonlinearities as the Beddington-
May function is the following:

Theorem 3.1. [16, Theorem 1] Define M = max{h(x) : 0 ≤ x ≤ x̄}. If h(x) 6= 0
for all x ∈ (0, M ] and x̄ is a global attractor for (3.2) in (0, M ], then x̄ is globally
stable for Eq. (1.1).

Notice that condition h(x) 6= 0 for all x ∈ (0, M ] always holds if h(x) > 0 for all
x > 0, as in the Ricker and Shepherd functions, but it is necessary to require it when
considering the Beddington-May function.

In order to apply Theorem 3.1, we need global stability results for the recurrence
(3.2), in other words, sufficient conditions to ensure that all orbits {hn(x)}, x > 0,
converge to the positive equilibrium.

One of most known tools is the Schwarzian derivative. We recall that the Schwar-
zian derivative of a C3 function h is defined as

(Sh)(x) =
h′′′(x)

h′(x)
−

3

2

(

h′′(x)

h′(x)

)2

whenever h′(x) 6= 0.
Using Singer’s results [39], it is not difficult to prove that if h is a decreasing or

unimodal map with a unique fixed point x̄ and negative Schwarzian in every point
(except the critical one in the unimodal case), then x̄ is globally stable if and only if
|h′(x̄)| ≤ 1. This fact was used to get sharp results on the absolute stability of the
positive equilibrium of (1.1) by Ivanov [24]. We notice that function h in the models of
Ricker and Shepherd, and also the discrete versions of delay equations with decreasing
nonlinearity cited in Section 2, have negative Schwarzian derivative everywhere.

As an example, for the discrete model

xn+1 = αxn + (1 − α)pe−γxn−k , p > 0, γ > 0, (3.3)

the equilibrium x̄ is the unique solution of equation h(x) = pe−γx = x. Since h is
decreasing and (Sh)(x) = −γ2/2 < 0 for all x ∈ R, condition |h′(x̄)| ≤ 1 implies the
global stability of the equilibrium. This condition is equivalent to pγ ≤ e, and it was
already found in [26] using a different approach.
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Clark’s model with the Beddington-May recruitment function

xn+1 = αxn + (1 − α)xn−k

[

1 + q
(

1 −
(xn−k

K

)z)]

+
, (3.4)

requires a more subtle analysis since function h(x) =
[

1 + q
(

1 −
(

x
K

)z)]

+
does not

have negative Schwarzian everywhere. In [16] it was proved that condition |h′(x̄)| ≤ 1
also implies the global stability of the equilibrium x̄ = K in (3.4). This condition
reads qz ≤ 2.

At this point, one should be happy with the obtained results for the global absolute
stability of the equilibrium in the considered models because they are sharp. However,
for a fixed k, the equilibrium of (1.1) is locally asymptotically stable even if |h′(x̄)| > 1
when α is close to one, that is, when the survival rate is large enough (see [13] for
more discussions). Thus, we should expect to get results of global stability in the
same direction.

Some interesting results were proved by several authors as discrete analogues of
stability theorems for the delay differential equation (1.3). After the pioneering work
of Karakostas et al. [26], some remarkable conditions were obtained by Győri and
Trofimchuk in [21]. A very useful result is their Corollary 18, which, roughly speaking,
establishes that to ensure the global stability of the positive equilibrium in (1.1) with
α ∈ (0, 1), the condition that x̄ be a global attractor for the map h may be replaced
for the weaker condition that x̄ is globally stable for the map g : [0,∞) → (0,∞)
defined by g(x) = αk+1x̄ + (1 − αk+1)h(x).

In particular, the global stability condition pγ ≤ e for Eq. (3.3) is improved to
pγ ≤ νeν , where ν = (1 − αk+1)−1 > 1 for all α ∈ (0, 1).

The same function g is used by El-Morshedy and Jiménez to improve the global
stability condition qz ≤ 2 for Eq. (3.4) up to qz ≤ 1 + ν, where ν is defined as before
(cf. [12, Corollary 4.7]).

We emphasize that these results show that, as it was noticed for the local stability,
for fixed k in equations (3.3) and (3.4), the positive equilibrium is globally attracting
whenever α is close enough to one.

Now, if h has negative Schwarzian derivative and is decreasing or unimodal, then
the same conditions hold for g and hence a sufficient condition for the global stability
of the positive equilibrium is |g′(x̄)| ≤ 1. This can be written in the form

αk+1 ≥
c − 1

c
, where c = |h′(x̄)|.

Actually, Győri and Trofimchuk obtained sharper conditions in [21]. In particular,
their Corollary 17 can be written in the following form:

Theorem 3.2. [21, Corollary 17] Define c = |h′(x̄)|. If h has negative Schwarzian
derivative, is decreasing or unimodal, and h(x) > 0 for all x > 0, then x̄ is globally
stable for Eq. (1.1) if either c ≤ 1 or c > 1 and

αk+1 ≥
c2 − c

1 + c2
. (3.5)
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Remark 3.1. In the unimodal case, we assume that h′(x̄) < 0. Otherwise, Corollary
10 in [21] ensures that x̄ is globally stable for (1.1). An analogous result was proved
in [16, Theorem 3] in a more general setting.

We emphasize that the result of Theorem 3.2 is exactly the discrete version of a
global stability theorem established by the same authors in [20] for the delay differ-
ential equation (1.3). In fact, they proved that, in the conditions of Theorem 3.2, the
positive equilibrium of (1.3) is globally stable if

e−τ ≥
c2 − c

1 + c2
. (3.6)

This is not surprising, since (1.1) may be obtained as a discretization of (1.3) with
α = 1 − τ/k. Since the discretization step goes to zero when k tends to ∞, and

lim
k→∞

αk+1 = lim
k→∞

(

1 −
τ

k

)k+1

= e−τ ,

it turns out that condition (3.5) is the natural discrete version of (3.6).
The estimate given in [20] for the global stability in equation (1.3) was later

improved in [32], where (3.6) was refined to

e−τ ≥ c ln

(

c2 + c

1 + c2

)

. (3.7)

This condition is sharper than (3.6) since ln(1 + y) < y for all y > 0. (Take y =
(c − 1)/(1 + c2).)

Tkachenko and Trofimchuk proved that the corresponding condition also ensures
that x̄ is a global attractor for (1.1):

Theorem 3.3. [40, Theorem 1] In the conditions of Theorem 3.2, the positive equi-
librium x̄ of (1.1) is globally stable if either c ≤ 1 or c > 1 and

αk+1 ≥ c ln

(

c2 + c

1 + c2

)

. (3.8)

In fact, Theorem 7 in [40] applies to a model more general than (1.1), since it is
allowed the recruitment function to depend on the variables xn, xn−1, . . . , xn−k.

For the particular case of Eq. (3.3), El-Morshedy proved in [11] that, under addi-
tional assumptions, a condition sharper than (3.8) is sufficient for the global stability
of the equilibrium. This condition reads

αk+1 ≥
c − 1

c + 1
. (3.9)

Remark 3.2. We emphasize that condition (3.9) without additional assumptions
does not imply even the local asymptotic stability of the equilibrium for large k.
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The approach in [11] was generalized in [15] to the general case of decreasing h
with negative Schwarzian. A remarkable improvement was made by Tkachenko and
Trofimchuk; they found a sequence of numbers αk, k = 1, 2, . . . , such that condition
(3.9) implies the global stability of the equilibrium in (1.1) if α ∈ (0, αk] (see Theorem
2, Theorem 3 and Corollary 4 in [40]). For example, when k = 1, they proved the
following result:

Theorem 3.4. [40, Corollary 5] Assume that k = 1. In the conditions of Theo-
rem 3.2, the positive equilibrium x̄ of (1.1) is globally stable if one of the following
conditions holds:

(a) Either c ≤ 1 or c > 1, (3.9) holds and α ≤ 0.88.

(b) α ≥ max{0.88, (c− 0.88)/c}.

For k = 1 in (1.1), the equilibrium is locally asymptotically stable if α > (c−1)/c.
It can be checked that in this case Theorem 3.4 gives sharper conditions for the global
stability than Theorem 3.3.

Example 3.1. Consider the following particular case of equation (3.3):

xn+1 = αxn + (1 − α)2e2−xn−1 . (3.10)

The unique equilibrium is x̄ = 2. Since h(x) = 2e2−x and c = |h′(2)| = 2 > 1,
Theorem 3.1 does not apply. We know that x̄ = 2 is asymptotically stable for α >
(c − 1)/c = 0.5.

Using the previously stated results, we have that Theorem 3.2 provides the global
stability of the equilibrium for α > (2/5)1/2 ≈ 0.6324. Theorem 3.3 improves this
condition to α > (2 ln(6/5))1/2 ≈ 0.6038. Finally, Theorem 3.4 ensures that x̄ is
globally stable for α > (1/3)1/2 ≈ 0.577. Numerical simulations suggest that in fact
the equilibrium attracts all admissible solutions of (3.10) if α > 0.5, that is, whenever
it is asymptotically stable.

4. Bifurcations and periodic points

In order to study the dynamics of equation (1.1), we notice that there is a natural
correspondence between the solutions of a difference equation

xn+1 = F (xn, xn−1, . . . , xn−k)

and the orbits of the discrete dynamical system associated to the map F̄ : R
k+1 →

R
k+1 defined by

F̄ (x0, x1, . . . , xk) = (x1, x2, . . . , xk, F (x0, x1, . . . , xk)).

Namely, if {xn} is the solution of the difference equation with initial vector u =
(x−k, . . . , x−1, x0), then F̄n(u) = (xn−k, . . . , xn−1, xn) for every n. Hence the study
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of the dynamics of (1.1) can be reduced to the study of the discrete dynamical system
generated by the map

Hα(x0, x1, . . . , xk) = (x1, x2, . . . , xk, αxk + (1 − α)h(x0)). (4.1)

When we talk about bifurcations and periodic points for (1.1), we are considering this
equivalent dynamical system. We refer to [22, 37, 41] for definitions.

Contrary to the global stability issue, the dynamics of (1.1) when the equilibrium
is unstable has not received much attention in the literature. There are two possible
approaches to this problem. One of them was suggested by An der Heiden and Liang
[23], who claim that the pair of equations (1.1) and (1.2) form a discrete singular
perturbation problem (as α → 0) parallel to the well-known continuous perturbation
problem between the pair (1.3) and (3.2). We recall that the limit form of (1.3) as τ →
∞ is the difference equation with continuous argument x(t) = h(x(t−1)) (see [25] for
more details). In this way, it would be interesting to study the correspondence between
the asymptotic properties of the (k + 1)-dimensional dynamical system generated by
the recurrence (1.2) and the asymptotic behaviour of the solutions of (1.1) for α close
to zero.

The periodic structure for Eq. (1.2) based on that of (3.2) is studied in [23]; see
also [2, 9, 31]. However, the same problem for α 6= 0 was not addressed. As far as we
know, the first perturbation theorem was proved in [13] for the case when h is a C1

function having a hyperbolic repelling fixed point x̄, a hyperbolic attracting 2-cycle
{a, b} and no other periodic points. Under some mild additional conditions, if α ≥ 0
is small enough, then Eq. (1.1) has exactly as many cycles (with the same periods
and local dynamics) as Eq. (1.2) and these cycles attract all solutions of (1.1). (See
[13, Theorem 8]).

Since we are assuming that h′(x̄) < 0, the local stability of the equilibrium in
(3.2) is usually lost in a period-doubling bifurcation, and therefore the previous result
applies for values of |h′(x̄)| close to 1. In fact, when h is decreasing and has nega-
tive Schwarzian derivative, this situation holds for all |h′(x̄)| > 1, according to the
following dichotomy result:

Theorem 4.1. Assume that h : [0,∞) → [0,∞) is three times differentiable, and
(Sh)(x) < 0, h′(x) < 0 for all x ≥ 0. Let x̄ be the unique fixed point of h. Then one
of the following occurs:

(a) If |h′(x̄)| ≤ 1, then limn→∞ hn(x) = x̄ , ∀x ≥ 0.

(b) If |h′(x̄)| > 1, then the equilibrium is unstable and there is a globally attracting
2-cycle. More precisely, there exist a, b ∈ [0,∞), a < b, such that h(a) = b,
h(b) = a, and limn→∞ h2n(x) = a if x < x̄, limn→∞ h2n(x) = b if x > x̄.

The proof of Theorem 4.1 follows easily from Singer’s results [39].
From Theorem 1.2 in [23], it follows that if (3.2) has cycles with minimal periods

1 and 2, then the set of minimal periods of (1.2) is

Sk(2) = {1} ∪ {2r : r ∈ N, r|(k + 1) and ((k + 1)/r, 2) is coprime} .
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Recall that the pair of natural numbers (m, n) is called coprime if 1 is the only
common divisor of m and n. For example,

k = 1 =⇒ S1(2) = {1, 4} ; k = 2 =⇒ S2(2) = {1, 2, 6} .

a

a

b

b

B

B

B

B

P=(x,x)

A

A

A

A

2

4

32

31

1 4

x

x

Figure 1: Saddle-Node configuration for α = 0.

For k = 1 in (1.2), we can state the following analogous of Theorem 4.1:

Theorem 4.2. Assume that k = 1 and the conditions of Theorem 4.1 hold. Then,
one of the following occurs:

(a) If |h′(x̄)| ≤ 1, then x̄ is the global attractor of all positive solutions of (1.2).

(b) If |h′(x̄)| > 1, then Eq. (1.2) has exactly two solutions of minimal period four
(up to shifts): one node and one saddle. Moreover, they attract all solutions
with initial condition (x−1, x0) 6= (x̄, x̄).

It is easy to see that the node is defined by the sequence {a, a, b, b, . . .}, where
{a, b} is the unique cycle of the map h with minimal period two, and the saddle is
defined by {a, x̄, b, x̄, . . . }. Thus, if we consider the associated map H = H0 : R

2
+ →

R
2
+ defined by H(x, y) = (y, h(x)), then the fixed point P = (x̄, x̄) is a repeller,

the attracting cycle of period four is P1 = {B1, B2, B3, B4}, where B1 = (a, a),
B2 = (a, b), B3 = (b, b), B4 = (b, a), and the saddle is P2 = {A1, A2, A3, A4}, where
A1 = (a, x̄), A2 = (x̄, b), A3 = (b, x̄), A4 = (x̄, a). This cycle attracts the set

W = {(x, y) ∈ R
2
+ : (x − x̄)(y − x̄) = 0} \ {P}.

The set W is formed by the union of the stable manifolds of the points Ai (i = 1, 2, 3, 4)
under the 4th iterate of H . The remainder points are attracted by P1. Figure 1 shows
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the dynamics of the fourth iteration of H . Notice that the square with vertices
B1, B2, B3, B4 is invariant and attracts R

2
+ \ {P}. This type of attractor is usually

called “resonance circle” (see, e.g., [1] and [22, Chapter 15]).
According to Theorem 8 in [13], the conclusions of Theorem 4.2 remain valid for

Eq. (1.1) with k = 1 for all small enough values of α ≥ 0. It would be interesting to
investigate whether or not the resonance circle also persists for small enough α.

We notice that a similar situation holds for Eq. (1.1) when k ≥ 2. The main
difference is that multistability is possible, that is, there are coexisting attracting
periodic solutions of different periods. For example, for k = 2 and small α, almost
all points are attracted by a cycle of period 2 and other of period 6 (see [13, 14] for
a detailed example).

Assuming that h has an attracting 2-cycle {a, b}, it is worth mentioning that in
the semelparous case (α = 0), there is always an attracting cycle of period 2(k + 1)
corresponding to the initial vector (a, a, . . . , a) ∈ R

k+1. As mentioned by Mertz and
Myers [34], Ricker was the first one to notice long-period endogenous population
fluctuations in his simulations of an age-structured fish stock. He estimated that
the natural period of these oscillations (called Ricker oscillations in [34]) is twice the
median time from oviposition to oviposition. The same authors claim that there is
some empirical evidence of oscillations of period two. In [13], it was proved that
Equation (1.1) has a cycle of minimal period 2 if and only if k is even and the one-
dimensional map

hα(x) := αx + (1 − α)h(x) (4.2)

has a cycle of minimal period 2 (see [13, Proposition 6]). Thus, if h meets the
conditions of Theorem 4.1 and k is even then Eq. (1.1) has always two coexisting
attracting periodic solutions of minimal periods 2 and 2(k + 1) for small enough α.

Another approach to study the dynamics of (1.1) consists in considering it as a
one parameter family of maps of R

k+1
+ , in the line of Aronson et al. [1]. Thus, we

should investigate the bifurcations occurring in this family when the parameter α
ranges between 1 and 0.

Since the positive equilibrium is asymptotically stable when −1 ≤ h′(x̄) < 0, we
assume c = −h′(x̄) > 1. Looking at the characteristic equation (3.1), we know that
x̄ is locally asymptotically stable for α close to one. For the asymptotical stability
to be lost, (3.1) must have a root crossing the unit circle of the complex plane in
the increasing direction of its modulus. It is easy to check that the characteristic
polynomial p(λ) = λk+1 −αλk − (1−α)h′(x̄) cannot have a root λ = 1 for α ∈ [0, 1),
and λ = −1 is only possible for even k and α = α0 = (c−1)/(c+1). This coincides with
the border of the asymptotic stability region in the plane (c, α) for k = 0. If k > 0, the
asymptotic stability of the equilibrium is lost for a critical value α = αk > α0. (We
notice that, for k = 0, a supercritical period-doubling bifurcation for Eq. (1.1) occurs
at α = α0 if (Shα)(x̄) < 0, see [13, Theorem 5].) Thus, for k ≥ 1, the typical situation
in which the roots of p(λ) cross the unit circle is by a couple of conjugate complex
zeros, giving place to the born of an attracting invariant circle via a Naimark-Sacker
bifurcation (also called Hopf bifurcation for maps, see, e.g, [41]). This fact was also
observed in [4], where some discussions were made considering a Ricker recruitment
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function.
Numerical experiments for k = 1, 2, and a recruitment function as in Example

3.1 show that the invariant curve is smooth for values of α close to the bifurcation
point αk and it losses its differentiability in some intervals giving place to attracting
periodic points of different minimal periods. This typically occurs through saddle-
node bifurcations for different iterations Hq

α of the map Hα defined in (4.1). The latest
one occurs for α close to zero and q = 2(k + 1), giving place to the attracting cycle
which persists until α = 0. A very interesting discussion of this type of bifurcations
can be seen in [1] for the difference equation

xn+1 = αxn(1 − xn−1)

proposed by Maynard Smith as a discrete model in population dynamics.
We finish considering again the two-dimensional model defined by Equation (3.10)

in Example 3.1. For a discussion of the corresponding three-dimensional model, see
[13].

Example 4.1. Let us state again Equation (3.10):

xn+1 = αxn + (1 − α)2e2−xn−1 . (4.3)

The characteristic equation associated to the linearization at x̄ is

λ2 − αλ + 2(1 − α) = 0.

The roots λ± = (α ± (α2 − 8(1 − α))1/2)/2 satisfy |λ±|
2 = 2 − 2α, and it is easy

to check that at α1 = 0.5 they cross transversally the unit circle. An application
of the Naimark-Sacker bifurcation theorem for two-dimensional maps (see, e.g., [22,
Theorem 15.31]) ensures the existence of an attracting closed C1 invariant circle for
α in a neighbourhood (0.5 − δ, 0.5), δ > 0, of the bifurcation point α1 = 0.5.

Numerical simulations show that, during small ranges of values of the parameter
α, an attracting cycle is observed instead of the invariant circle; for example, a period
9 cycle between α = 0.223 and α = 0.235 or a period 13 cycle between α = 0.137
and α = 0.144. These cycles appear in successive saddle-node bifurcations for the
corresponding iterate of the planar map Hα(x, y) = (y, αy + (1 − α)2e2−x). For
example, it can be shown that for α = α∗ ≈ 0.0772, there is a fixed point P0 =
(1.26, 0.09) of map H4

α∗

such that the Jacobian matrix D(H4
α∗

)P0
of the linearization

at P0 has two eigenvalues λ1 = 1, λ2 ∈ (0, 1). Direct computations show that the
Saddle-Node Bifurcation Theorem for 2-dimensional maps can be applied to H4

α (see,
e.g., [37, Theorem VII.2.2]). This means that it is possible to parametrize α =
m(s), (x, y) = q(s) such that m(0) = α∗, q(0) = P0, H4

m(s)(q(s)) = q(s). Numerical

continuation methods show that the fixed point exists for α ∈ [0, α∗]. Moreover,
λ2 < 1 for α ∈ [0, α∗], and hence there exist two fixed points of H4

α: a stable node
and a saddle. Thus, the dynamics described in Theorem 4.2 (b) holds for α between
0 and α∗.

In Figure 2 we plotted the bifurcation diagram for µ := 1 − α ranging between
µ = 0 and µ = 1. We can observe several periodic windows; in particular, the latest
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x

Figure 2: Bifurcation diagram for µ = 1 − α.

x

Figure 3: A magnification of the bifurcation diagram for 0.75 ≤ µ ≤ 0.8.
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one corresponds to the attracting orbit of period four. The right-hand side part of this
diagram reveals an important fact: although for µ = 1 (semelparous case) there is a
4-periodic solution, it behaves as an orbit of period 2, since the population oscillates
only between two values (the lowest one close to 0 and the highest one close to 15).
For α small enough but positive, there is a real period four orbit; the approximate
values for α = α∗ are 0.09, 1.26, 3.87 and 12.76.

In Figure 3 we plotted a magnification of the bifurcation diagram for µ ∈ [0.75, 08]
(that is, α ∈ [0.2, 0.25]). This picture shows clearly the window corresponding to a
period 9 attracting cycle for the values of α between 0.223 and 0.235 mentioned before.

Remark 4.1. Since we performed simple numerical experiments, we notice that the
observed invariant curve or periodic orbit might hide a more complicated attractor for
some values of the parameter. See [1] for further discussions on this topic.
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[20] I. Győri and S. Trofimchuk, Global attractivity in x′(t) = −δx(t) + pf(x(t− τ)),
Dynamic Syst. Appl. 8 (1999) 197–210.
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[22] J. K. Hale and H. Koçak, Dynamics and bifurcations, Springer-Verlag, New
York, 1991.

[23] U. an der Heiden and M.-L. Liang, Sharkovsky orderings of higher order differ-
ence equations, Discrete Contin. Dynam. Systems 11 (2004) 599–614.

[24] A. F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal-
ysis TMA 23 (1994) 1383–1389.

[25] A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay
equations, Dynamics Reported (New Series) 1 (1992) 164–224.



80 E. Liz

[26] G. Karakostas, Ch. G. Philos and Y. G. Sficas, The dynamics of some discrete
population models, Nonlinear Anal. 17 (1991) 1069–1084.
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