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Throughout this talk C denotes a strict braided monoidal category with tensor
product ⊗, unit object K and braiding c.
Recall that a monoidal category is a category C together with a functor

⊗ : C× C→ C

called tensor product, an object K of C, called the unit object, and families of
natural isomorphisms

aM,N,P : (M ⊗ N)⊗ P → M ⊗ (N ⊗ P), rM : M ⊗ K → M, lM : K ⊗M → M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

aM,N,P⊗Q ◦ aM⊗N,P,Q = (idM ⊗ aN,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N,P ⊗ idQ),

(idM ⊗ lN) ◦ aM,K ,N = rM ⊗ idN ,

where for each object X in C, idX denotes the identity morphism of X .
A monoidal category is called strict if the constraints of the previous paragraph are
identities.
It is a well-known fact that every non-strict monoidal category is monoidal equi-
valent to a strict one. This lets us to treat monoidal categories as if they were
strict and, as a consequence, the results proved in a strict setting hold for every
non-strict monoidal category.
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For simplicity of notation, given objects M, N, P in C and a morphism f : M → N,
we will write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .
A braiding for a strict monoidal category C is a natural family of isomorphisms

cM,N : M ⊗ N → N ⊗M

subject to the conditions

cM,N⊗P = (N ⊗ cM,P) ◦ (cM,N ⊗ P), cM⊗N,P = (cM,P ⊗ N) ◦ (M ⊗ cN,P)

for all M,N,P ∈ C.
If

cN,M ◦ cM,N = idM⊗N

for all M,N in C, we will say that C is symmetric.
Then the results presented in this talk hold in

Set, the category of sets.
F-Vect, the category of vector spaces over a field F.
RMod, the category of left modules over a commutative ring R.
Rep(G), the category of representations of a group G .
sVect, the category of super-vector spaces.
B, the braid category.
HMod, the category of left H-modules for a quasitriangular Hopf algebra.
H
HYD, the category of left Yetter-Drinfeld modules over a Hopf algebra such that
the antipode is an isomorphism.

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K → A
(unit), µA : A⊗ A→ A (product) are morphisms in C such that

µA ◦ (A⊗ ηA) = idA = µA ◦ (ηA ⊗ A), µA ◦ (A⊗ µA) = µA ◦ (µA ⊗ A)

hold.

Definition

Given two algebras A = (A, ηA, µA) and B = (B, ηB , µB), a morphism f : A→ B in C
is an algebra morphism if

f ◦ ηA = ηB , µB ◦ (f ⊗ f ) = f ◦ µA

hold.

If A, B are algebras in C, the tensor product A⊗ B is also an algebra in C where

ηA⊗B = ηA ⊗ ηB , µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗ B).
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Definition

A coalgebra in C is a triple D = (D, εD , δD) where D is an object in C and εD : D → K
(counit), δD : D → D ⊗ D (coproduct) are morphisms in C such that

(εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD , (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD

hold.

Definition

If D = (D, εD , δD) and E = (E , εE , δE ) are coalgebras, a morphism f : D → E in C is
a coalgebra morphism if

εE ◦ f = εD , (f ⊗ f ) ◦ δD = δE ◦ f

hold.

Given D, E coalgebras in C, the tensor product D ⊗ E is a coalgebra in C where

εD⊗E = εD ⊗ εE , δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE ).
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Example

In the category of vector spaces over a field F we can find interesting examples of
coalgebras. For example, if S is a set, with F[S] we will denote the free F-vector space
on S , i.e.,

F[S] =
⊕
s∈S

Fs.

This vector space has a coalgebra structure determined by

εF[S](s) = 1F, δF[S](s) = s ⊗ s.

Definition

Let D = (D, εD , δD) be a coalgebra in C. We will say that a morphism g : K → D is a
grouplike morphism if satisfy δD ◦ g = g ⊗ g , εD ◦ g = idK .

Definition

Let (D, εD , δD) be a coalgebra in F-Vect. A grouplike element c of D is a c ∈ D such
that the linear map gc : F → D defined by gc (1F) = c is a grouplike morphism in
F-Vect.
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In the following we will denote by G(D) the set of grouplike elements of D and G(D)
is a subcoalgebra of D.
If S is a set, the coalgebra F[S] is called the grouplike coalgebra of S and satisfies

G(F[S]) = S .

Definition

A pointed coalgebra in F-Vect is a coalgebra D whose simple subcoalgebras are one-
dimensional.
Then, D is pointed if and only if its coradical D0 (the sum of the simple subcoalgebras
of D) is the grouplike coalgebra of G(D), i.e., D0 = F[G(D)].

Definition

We will say that the coalgebra D is cosemisimple if D = D0.

Therefore, if D is pointed cosemisimple, D = F[G(D)]. On the other hand, if G is a
group and D = F[G ], we have that D is pointed and cosemisimple.
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Definition

Let D = (D, εD , δD) be a coalgebra and let A = (A, ηA, µA) be an algebra. By

H(D,A)

we denote the morphisms f : D → A in C. With the convolution operation

f ∗ g = µA ◦ (f ⊗ g) ◦ δD ,

H(D,A) is an monoid where the unit element is ηA ◦ εD = εD ⊗ ηA.

We will say that f : D → A is convolution invertible if there exists f −1 : D → A such
that

f ∗ f −1 = f −1 ∗ f = εD ⊗ ηA.
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Definition

Let A be an algebra. The pair (M, ϕM) is a left A-module if M is an object in C and
ϕM : A⊗M → M is a morphism in C satisfying

ϕM ◦ (ηA ⊗M) = idM , ϕM ◦ (A⊗ ϕM) = ϕM ◦ (µA ⊗M).

Given two left A-modules (M, ϕM) and (N, ϕN), f : M → N is a morphism of left
A-modules if ϕN ◦ (A⊗ f ) = f ◦ ϕM .
Then left A-modules with morphisms of left A-modules form a category that we will
denote by AMod.

Definition

Let B an object in C such that there exists an associative product µB : B ⊗ B → B.
We will say that (M, φM : B ⊗M → M) is a non-unital left B-module if

φM ◦ (B ⊗ φM) = φM ◦ (µB ⊗M).

A morphism between non-unital left B-modules is a left B-linear morphism as in the
case of morphisms for modules over an algebra. Then non-unital left B-modules form a
category that we will denote by Bmod.
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Definition

A non-unital bialgebra in the category C is a coalgebra (B, εB , δB) with an associative
product µB : B ⊗ B → B such that µB is a coalgebra morphism. Then the following
identities hold:

εB ◦ µB = εB ⊗ εB ,

δB ◦ µB = (µB ⊗ µB) ◦ δB⊗B .

A bialgebra in C is an algebra (B, ηB , µB) and a coalgebra (B, εB , δB) such that ηB and
µB are coalgebra morphisms. Then,

εB ◦ ηB = idK , δB ◦ ηB = ηB ⊗ ηB

also hold.
A morphism between non-unital bialgebras H and B is a morphism f : H → B in C of
coalgebras and multiplicative. A morphism between bialgebras H and B is a morphism
f : H → B in C of algebras and coalgebras.
With the composition of morphisms in C we can define a category whose objects are
non-unital bialgebras (bialgebras) and whose morphisms are morphisms of non-unital
bialgebras (bialgebras). We denote this category by bialg (Bialg).
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Definition

Let B a non-unital bialgebra and let A be an algebra in C. We will say that (A, φA)
is a non-unital left B-module algebra if it is a non-unital left B-module with action
φA : B ⊗ A→ A such that

φA ◦ (B ⊗ ηA) = εB ⊗ ηA

and
φA ◦ (B ⊗ µA) = µA ◦ (φA ⊗ φA) ◦ (B ⊗ cB,A ⊗ A) ◦ (δB ⊗ A⊗ A)

hold.
If B is a bialgebra, we will say that (A, φA) is a left B-module algebra if (A, φA) is a
left B-module and the two previous conditions hold.
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Definition

Let B be a non-unital bialgebra and D = (D, εD , δD) a coalgebra in C. A pair (D, ϕD) is
said to be a non-unital left B-module coalgebra if (D, ϕD) is a non-unital left B-module
and the following equalities hold:

εD ◦ ϕD = εB ⊗ εD ,

and
δD ◦ ϕD = (ϕD ⊗ ϕD) ◦ δB⊗D .

In case that B is a bialgebra, a non-unital left B-module coalgebra (D, ϕD) is said to
be a left B-module coalgebra if (D, ϕD) is a left B-module.
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Definition

Let H be a bialgebra in C. If there exists a morphism λH : H → H in C, called the
antipode of H, satisfying that λH is the inverse of idH in H(H,H), i.e.,

idH ∗ λH = ηH ◦ εH = λH ∗ idH ,

we say that H is a Hopf algebra.
A morphism of Hopf algebras is an bialgebra morphism. We can define a category whose
objects are Hopf algebras and whose morphisms are morphisms of Hopf algebras. We
denote this category by

Hopf
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If H is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

and leaves the unit and counit invariant, i.e.,

λH ◦ ηH = ηH , εH ◦ λH = εH .

A Hopf algebra is cocommutative if

δH = cH,H ◦ δH .

It is easy to see that in this case

λH ◦ λH = idH .

Note that, if f : H → D is a Hopf algebra morphism the following equality holds:

λD ◦ f = f ◦ λH .
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T. Brzeziński: Trusses: between braces and rings, Trans. Am. Math. Soc. 372,
4149-4176 (2019). C = F-Vect

Definition

Let (H, εH , δH) be a coalgebra in C. Assume that there are an algebra structure
(H, ηH , µ

1
H), a product µ2

H : H ⊗ H → H and two endomorphism of H denoted by
λH and σH . We will say that

(H, ηH , µ
1
H , µ

2
H , εH , δH , λH , σH)

is a Hopf truss if:

(i) H1 = (H, ηH , µ
1
H , εH , δH , λH) is a Hopf algebra in C.

(ii) H2 = (H, µ2
H , εH , δH) is a non-unital bialgebra in C.

(iii) The morphism σH is a coalgebra morphism and the following equality holds:

µ2
H ◦ (H ⊗ µ1

H) = µ1
H ◦ (µ2

H ⊗ Γ
σH
H1

) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H),

where
Γ
σH
H1

= µ1
H ◦ ((λH ◦ σH)⊗ µ2

H) ◦ (δH ⊗ H).
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Definition

We will say that a Hopf truss is cocommutative if the coalgebra (H, εH , δH) is cocom-
mutative.

Note that, a Hopf truss is a Hopf brace in the sense of I. Angiono, C. Galindo and L.
Vendramin

I. Angiono, C. Galindo, L. Vendramin: Hopf braces and Yang-Baxter operators,
Proc. Am. Math. Soc. 145, 1981-1995 (2017). C = F-Vect

if σH is the identity and there exists a morphism λ2
H : H → H such that

H2 = (H, ηH , µ
2
H , εH , δH , λ

2
H)

is a Hopf algebra.

Notation

Given a Hopf truss, we will denote it by H = (H1,H2, σH). The morphism σH is called
the cocycle of H.
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The cocycle σH of a Hopf truss H is fully determined by ηH and the product µ2
H in the

following way:
σH = µ2

H ◦ (H ⊗ ηH).

Then, as a consequence of the associativity for the product µ2
H , we have that

σH ◦ µ2
H = µ2

H ◦ (H ⊗ σH)

holds.
Finally, we know that the pair

(H1, Γ
σH
H1

)

is a non-unital left H2-module algebra.

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Given two Hopf trusses H and B, a morphism f between the two underlying objects
is called a morphism of Hopf trusses if f : H1 → B1 is a Hopf algebra morphism and
f : H2 → B2 is a morphism of non-unital bialgebras.
Then

σB ◦ f = f ◦ σH
holds.

Hopf trusses together with morphisms of Hopf trusses form a category which we denote
by

HTr

It is obvious that Hopf braces with morphisms of Hopf braces form a category which we
denote by HBr that is a full subcategory of HTr.
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Example

A skew truss is a set T with two binary operations �1 and �2 and a map ωT : T → T
(called the cocycle) such that the pair T1 = (T , �1) is a group with unit 1�1 , T2 =
(T , �2) is a semigroup and the following identity

a �2 (b �1 c) = (a �2 b) �1 ωT (a)�1 �1 (a �2 c)

holds for all a, b, c ∈ T . We will denote the previous skew truss by T = (T1,T2, ωT ).
A morphism f between two skew trusses T = (T1,T2, ωT ) and S = (S1,S2, ωS ) is a
map f between the two underlying sets such that f is a morphism of groups between
T1 and S1 and of semigroups between T2 and S2. With

SkTr

we will denote the category of skew trusses.

Then, in Set,
SkTr = HTr
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Let F be a field and C= F-Vect. There exists a functor

Pskt : SkTr→ HTr

given by
Pskt(T) = (F[T1],F[T2], σF[T ]),

where σF[T ] is the linear extension of ωT and λF[T ] = ( )�1 , on objects and by Pskt(f ) =
F[f ] on morphisms.

Let H = (H1,H2, σH) a Hopf truss in F-Vect. There exists a functor

Rht : HTr→ SkTr

defined by
Rht(H) = (G(H1),G(H2), ωG(H))

on objects and by
Rht(f ) = G(f )

on morphisms, where ωG(H) the restriction of σH to G(H) and G(f ) the restriction of
f to G(H)
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Definition

Let F be a field and let H be a Hopf truss in F-Vect. We will say that H is pointed
cosemisimple if the its subjacent coalgebra (H, εH , δH) is pointed and cosemisimple.

Theorem

Let F be a field and let Pskt and Rht be the functors defined in the previous slide. Then,

Pskt a Rht

and this adjunction induces an equivalence of categories between SkTr and the full
subcategory of HTr of all pointed cosemisimple Hopf trusses in F-Vect.
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Definition

Let H = (H, ηH , µH , εH , δH , λH) be a Hopf algebra in C and let B = (B, µB , εB , δB) be
a non-unital bialgebra in C. Assume that H is a non-unital left B-module algebra with
action φH : B ⊗ H → H. Let π : B → H be coalgebra morphism. We will say that π
is an generalized invertible 1-cocycle if it is an isomorphism and there exist a coalgebra
endomorphism θπ : B → B such that

π ◦ µB = µH ◦ ((π ◦ θπ)⊗ φH) ◦ (δB ⊗ π)

holds.

Definition

Let π : B → H and π′ : B′ → H′ be generalized invertible 1-cocycles. A morphism
between them is a pair (f , g) where f : B → B′ is a morphism of non-unital bialgebras
and g : H → H′ is a morphism of Hopf algebras satisfying the following identities:

f ◦ θπ = θπ′ ◦ f , g ◦ π = π′ ◦ f , g ◦ φH = φH′ ◦ (f ⊗ g).
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Definition

Then, with these morphisms, generalized invertible 1-cocycles form a category denoted
by GIC. In the following lines an object in GIC will also be denoted by the triple

(π : B → H, θπ).

Definition

Note that if (π : B → H, θπ) is a generalized invertible 1-cocycle such that B is a
Hopf algebra, (H, φH) is a left B-module algebra and θπ = idB , (π : B → H, idB) is
an invertible 1-cocycle. If we denote the category of invertible 1-cocycles by IC, it is
obvious that it is a full subcategory of GIC.
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Theorem

The categories GIC and HTr are equivalent.

Proof

Let H = (H1,H2, σH) be an object in HTr. Then, (idH : H2 → H1, θidH = σH) is a
generalized invertible 1-cocycle.

On the other hand, let H = (H1,H2, σH) and H′ = (H′1,H
′
2, σH′ ) be objects in HTr

and let f : H → H′ be a morphism between them. The pair (f , f ) is a morphism
in GIC between (idH : H2 → H1, σH) and (idH′ : H′2 → H′1, σH′ ).

Therefore, there exists a functor

E : HTr→ GIC

defined on objects by E(H) = (idH : H2 → H1, σH) and on morphisms by E(f ) =
(f , f ).
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Let (π : B → H, θπ) be an object in GIC. Define

µπH := π ◦ µB ◦ (π−1 ⊗ π−1)

and σπ := π ◦ θπ ◦ π−1. Then, Hπ = (H,Hπ , σπ), where

Hπ = (H, µπH , εH , δH),

is an object in HTr.

Also, if (f , g) : (π : B → H, θπ)→ (π′ : B′ → H′, θπ′ ) is a morphism in GIC, g is
a morphism in HTr between Hπ and H′

π′

As a consequence of these facts, we have a functor

Q : GIC→ HTr

defined by Q((π : B → H, θπ)) = Hπ on objects and by Q((f , g)) = g on
morphisms.

These functors induce an equivalence between the two categories because, clearly,
QE = idHTr and EQ w IdGIC.
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Corollary

The categories IC and HBr are equivalent.

The previous result was proved in:

I. Angiono, C. Galindo, L. Vendramin: Hopf braces and Yang-Baxter operators,
Proc. Am. Math. Soc. 145, 1981-1995 (2017). C = F-Vect
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Y. Li, Y. Sheng and R. Tang: Post-Hopf algebras, relative Rota-Baxter operators
and solutions of the Yang-Baxter equation, J. Noncommut. Geom 145, 1981-1995
(2024) (in press: DOI 10.4171/JNCG/537).

S. Wang: (Weak) Twisted post-groups, skew trusses and rings arXiv:2307.10535.
(2024).
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Definition

A weak twisted post-Hopf algebra in C is a triple (H,mH ,ΦH) where H is a Hopf algebra
in C and mH : H⊗H → H and ΦH : H → H are morphisms in C satisfying the following
conditions:
(i) mH is a coalgebra morphism, which means that the following equalities hold:

(i.1) δH ◦ mH = (mH ⊗ mH ) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH ),
(i.2) εH ◦ mH = εH ⊗ εH .

(ii) ΦH is a coalgebra morphism, that is to say:
(ii.1) δH ◦ ΦH = (ΦH ⊗ ΦH ) ◦ δH ,
(ii.2) εH ◦ ΦH = εH .

(iii) ΦH ◦ µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ H) = µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ ΦH).

(iv) mH ◦ (H ⊗mH) = mH ◦ ((µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ H))⊗ H).

(v) mH ◦ (H ⊗ µH) = µH ◦ (mH ⊗mH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ H ⊗ H).

The morphism ΦH will be called the cocycle of the weak twisted post-Hopf algebra H.

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let (H,mH ,ΦH) and (B,mB ,ΦB) be weak twisted post-Hopf algebras in C. We will say
that f : (H,mH ,ΦH)→ (B,mB ,ΦB) is a morphism of weak twisted post-Hopf algebras
if f : H → B is a Hopf algebra morphism such that

f ◦mH = mB ◦ (f ⊗ f ), ΦB ◦ f = f ◦ ΦH .

Therefore, weak twisted post-Hopf algebras give rise to a category that we will denote
by

wt-Post-Hopf.

If the underlying Hopf algebra is cocommutative, the structure (H,mH ,ΦH) is referred to
as a cocommutative weak twisted post-Hopf algebra. The corresponding full subcategory
is denoted as

coc-wt-Post-Hopf.
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Remark

Note that the definition of weak twisted post-Hopf algebras proposed by S. Wang in the
category C = F-Vect, always requires cocommutativity of the underlying Hopf algebra.
In the previous definition, this requirement was omitted.
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Theorem

Let (H,mH ,ΦH) be an object in wt-Post-Hopf. If

(?) (mH ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗ H) = (mH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H).

holds, then H = (H, µH , εH , δH) is a non-unital bialgebra in C, where

µH := µH ◦ (ΦH ⊗mH) ◦ (δH ⊗ H).

Remark

If C is a symmetric, condition (?) means that (H,mH) is in the cocommutativity class
of H following the notion introduced in:

J.N. Alonso Álvarez, J.M. Fernández Vilaboa, R. González Rodríguez: On
the (co)-commutativity class of a Hopf algebra and crossed products in a braided
category, Comm. Algebra 29, 12, 5857-5878 (2001).
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Theorem

Let (H,mH ,ΦH) be an object in wt-Post-Hopf such that (?) holds. Then, the triple

H = (H,H,ΦH)

is an object in HTr.

As a consequence, if we denote by wt-Post-Hopf? to the full subcategory of
wt-Post-Hopf whose objects satisfy (?), then there exists a functor

F : wt-Post-Hopf? −→ HTr

defined on objects by
F((H,mH ,ΦH)) = H

and on morphisms by the identity.
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Theorem

Let H = (H1,H2, σH) be an object in HTr such that the condition

(?) (Γ
σH
H1
⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗ H)

= (Γ
σH
H1
⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H)

holds. Under these hypothesis, (H1, Γ
σH
H1
, σH) is an object in wt-Post-Hopf?.

Remark

When C is symmetric, note that (?) means that (H1, Γ
σH
H1

) is in the cocommutativity
class of H2.
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From now on, let’s denote by HTr? to the full subcategory of HTr whose objects satisfy
condition (?). Therefore, there exists a functor

G : HTr? −→ wt-Post-Hopf?

acting on objects by G(H) = (H1, Γ
σH
H1
, σH) and on morphisms by the identity.

Remark

Note also that if (H,mH ,ΦH) is an object in wt-Post-Hopf?, the Hopf truss
F((H,mH ,ΦH)) = H belongs to the category HTr?, so F admits a factorization from
wt-Post-Hopf? to HTr?.

Theorem

The categories wt-Post-Hopf? and HTr? are isomorphic.

Corollary

Categories coc-wt-Post-Hopf and coc-HTr are isomorphic.
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M. Goncharov: Rota-Baxter operators on cocommutative Hopf algebras, J. Algebra
582, 39-56 (2021).

Y. Li, Y. Sheng and R. Tang: Post-Hopf algebras, relative Rota-Baxter operators
and solutions of the Yang-Baxter equation, J. Noncommut. Geom 145, 1981-1995
(2024) (in press: DOI 10.4171/JNCG/537).

C = F-Vect
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Definition

Let H = (H, ηH , µH , εH , δH , λH) be a Hopf algebra and let B = (B, µB , εB , δB) be a
non-unital bialgebra in C. Suppose that there exists a morphism ϕH : B ⊗ H → H
such that (H, ϕH) is a non-unital left B-module algebra-coalgebra. We will say that a
coalgebra morphism

T : H → B

is a weak twisted relative Rota-Baxter operator if there exists ΨH : H → H a coalgebra
morphism, called the cocycle of T , such that the following conditions hold:

(i) µB ◦ (T ⊗ T ) = T ◦ µH ◦ (ΨH ⊗ (ϕH ◦ (T ⊗ H))) ◦ (δH ⊗ H),

(ii) ΨH ◦µH ◦(ΨH⊗(ϕH ◦(T⊗H)))◦(δH⊗H) = µH ◦(ΨH⊗(ϕH ◦(T⊗H)))◦(δH⊗ΨH).
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In what follows we will denote weak twisted relative Rota-Baxter operators by

(T
H
↓
B

, ϕH ,ΨH).

If we define mH by
mH = ϕH ◦ (T ⊗ H) : H ⊗ H → H,

conditions (i) and (ii) of previous definition are equivalent to

(i) µB ◦ (T ⊗ T ) = T ◦ µH ◦ (ΨH ⊗ mH) ◦ (δH ⊗ H),

(ii) ΨH ◦ µH ◦ (ΨH ⊗ mH) ◦ (δH ⊗ H) = µH ◦ (ΨH ⊗ mH) ◦ (δH ⊗ΨH).
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Definition

Let (T
H
↓
B

, ϕH ,ΨH) and (T ′
H′

↓
B′

, ϕH′ ,ΨH′ ) be weak twisted relative Rota-Baxter

operators. We will say that

(f , g) : (T
H
↓
B

, ϕH ,ΨH)→ (T ′
H′

↓
B′

, ϕH′ ,ΨH′ ),

where f : H → H′ is a Hopf algebra morphism and g : B → B′ is a morphism of non-
unital bialgebras, is a morphism of weak twisted relative Rota-Baxter operators if the
following conditions hold:

T ′ ◦ f = g ◦ T , f ◦ΨH = ΨH′ ◦ f , f ◦ ϕH = ϕH′ ◦ (g ⊗ f ).

So, weak twisted relative Rota-Baxter operators give rise to a category that we will
denote by wtr-RB.
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Remark

Consider (T
H
↓
B

, ϕH ,ΨH) a weak twisted relative Rota-Baxter operator. Due to being

T a coalgebra morphism and (H, ϕH) a non-unital left B-module algebra-coalgebra, it
is straightforward to prove that the following equalities hold:

mH ◦ (H ⊗ ηH) = εH ⊗ ηH ,

mH ◦ (H ⊗ µH) = µH ◦ (mH ⊗ mH) ◦ δH⊗H ,

εH ◦ mH = εH ⊗ εH ,

δH ◦ mH = (mH ⊗ mH) ◦ δH⊗H .

Moreover, the equality

mH ◦ ((µH ◦ (ΨH ⊗ mH) ◦ (δH ⊗ H))⊗ H) = mH ◦ (H ⊗ mH)

also holds.
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Remark

Note that if (f , g) is a morphism between the weak twisted relative Rota-Baxter ope-

rators (T
H
↓
B

, ϕH ,ΨH) and (T ′
H′

↓
B′

, ϕH′ ,ΨH′ ), then

f ◦ mH = mH′ ◦ (f ⊗ f )

holds.
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Theorem

Let (T
H
↓
B

, ϕH ,ΨH) be a weak twisted relative Rota-Baxter operator such that

(?) (mH ⊗ H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH)⊗ H)

= (mH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ H)

holds. Then, H̃ = (H, µ̃H , εH , δH), where

µ̃H := µH ◦ (ΨH ⊗ mH) ◦ (δH ⊗ H),

is a non-unital bialgebra in C.

Remark

Note that, (H,mH) is a non-unital left H̃-module. Then, if C is symmetric, we can say
that (H,mH) is in the cocommutativity class of H̃ because (?) holds.
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Theorem

Let (T
H
↓
B

, ϕH ,ΨH) be a weak twisted relative Rota-Baxter operator such that (?)

holds. Then, the triple H̃ = (H, H̃,ΨH) is an object in HTr?.

Remark

Then, if we denote by wtr-RB? to the full subcategory of wtr-RB of objects satisfying
the condition (?), there exists a functor

Ω: wtr-RB? −→ HTr?

defined on objects by

Ω((T
H
↓
B

, ϕH ,ΨH)) = H̃

and on morphisms by Ω((f , g)) = f .
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Theorem

Let H = (H1,H2, σH) be an object in HTr?. Then, the triple

(idH

H1
↓
H2

, Γ
σH
H1
, σH)

is a weak twisted relative Rota-Baxter operator satisfying condition (?).

Remark

Thus, from the above theorem, it follows that there exists a functor

Λ: HTr? −→ wtr-RB?

acting on objects by

Λ(H) = (idH

H1
↓
H2

, Γ
σH
H1
, σH)

and on morphisms by Λ(f ) = (f , f ).

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

The functor Λ is left adjoint to the functor Ω.

Remark

Consider the full subcategory of wtr-RB? consisting of all weak twisted relative Rota-

Baxter operators (T
H
↓
B

, ϕH ,ΨH), such that T is an isomorphism in C. We will denote

this subcategory by
wtr-RB?iso.

Moreover, take into account that the image of the functor Λ are in this subcategory we
have a functor

Λ: HTr? −→ wtr-RB?iso.

Thus, if we denote by Ω′ the restriction of functor Ω to the subcategory wtr-RB?iso,
the following result states that Λ and Ω′ give rise to a categorical equivalence between
wtr-RB?iso and HTr?.

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

The categories HTr? and wtr-RB?iso are equivalent.

Corollary

The categories HTr?, wtr-RB?iso and wt-Post-Hopf? are equivalent.

Corollary

The categories coc-HTr and coc-wtr-RBiso are equivalent.

Corollary

The categories coc-HTr, coc-wtr-RBiso and coc-wt-Post-Hopf are equivalent.
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Definition

Let H be a Hopf truss. A left H-module is a triple (M, ψ1
M , ψ

2
M), where (M, ψ1

M) is a
left H1-module, (M, ψ2

M) is a non-unital left H2-module and the following identity

ψ2
M ◦ (H ⊗ ψ1

M) = ψ1
M ◦ (µ2

H ⊗ Γ
σH
M ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ H ⊗M)

holds, where
Γ
σH
M = ψ1

M ◦ ((λH ◦ σH)⊗ ψ2
M) ◦ (δH ⊗M).

Given two left H-modules (M, ψ1
M , ψ

2
M) and (N, ψ1

N , ψ
2
N), a morphism f : M → N is

called a morphism of left H-modules if f is a morphism of left H1-modules and left non-
unital H2-modules. Left H-modules with morphisms of left H-modules form a category
which we denote by

HMod.
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Examples

(i) Let H be a Hopf truss. The triple (H, ψ1
H = µ1

H , ψ
2
H = µ2

H) is an example of left
H-module. Also, if K is the unit object of C, (K , ψ1

K = εH , ψ
2
K = εH) is a left

H-module called the trivial module.

(ii) If X is an object in C, H ⊗ X = (H ⊗ X , ψ1
H⊗X = µ1

H ⊗ X , ψ2
H⊗X = µ2

H ⊗ X ) is
an example of left H-module. Also, if f : X → X ′ is a morphism in C, H ⊗ f is a
morphism in HMod between H⊗ X and H⊗ X ′. Therefore, there exist a functor,
called the induction functor, H⊗− : C→ HMod defined on objects by

H⊗−(X ) = H⊗ X

and on morphisms by H⊗−(f ) = H⊗ f .

Remark

If the a Hopf truss H is a Hopf brace and we assume that a (M, ψ2
M) is a left H2-module,

we obtain the definition of module over a Hopf brace introduced in

R. González Rodríguez: The fundamental theorem of Hopf modules for Hopf
braces, Linear Multilinear Algebra 70, 5146-5156 (2022).

Hopf trusses an related structures in a monoidal setting Hopf trusses an related structures in a monoidal setting



Preliminaries and notations
Hopf trusses

Hopf trusses and generalized invertible 1-cocycles
Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses
Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let (π : B → H, θπ) be a generalized invertible 1-cocycle. A left module over

(π : B → H, θπ)

is a 6-tuple (M,N, φM , ϕM , φN , γ) where:

(i) φM : B ⊗M → M is a morphism in C.

(ii) (M, ϕM) is a left H-module.

(iii) (N, φN) is a non-unitary left B-module.

(iv) The equality

φM ◦ (B ⊗ ϕM) = ϕM ◦ (φH ⊗ φM) ◦ (B ⊗ cA,H ⊗M) ◦ (δB ⊗ H ⊗M).

holds.

(v) γ : N → M is an isomorphism in C such that

γ ◦ φN = ϕM ◦ ((π ◦ θπ)⊗ φM) ◦ (δB ⊗ γ).
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Definition

Let (M,N, φM , ϕM , φN , γ) and (M′,N′, φM′ , ϕM′ , φN′ , γ
′) be left modules over a gene-

ralized invertible 1-cocycle (π : B → H, θπ). A morphism between them is a pair (h, l)
of morphisms in C such that:

(i) The morphism h : M → M′ satisfies h ◦ φM = φM′ ◦ (B ⊗ h) and is left H-linear.

(ii) The morphism l : N → N′ is left B-linear.

(iii) The following identity holds:
h ◦ γ = γ′ ◦ l .

With the obvious composition of morphisms, left modules over a generalized invertible
1-cocycle (π : B → H, θπ) with action φH form a category that we will denote by

(π,φH ,θπ)Mod

If (π : B → H, θπ) is a generalized invertible 1-cocycle, the 6-tuple (H,B, φH , µH , µB , π)
is an example of left module over (π : B → H, θπ).
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Theorem

Let (f , g) be a morphism between the generalized invertible 1-cocycles (π : B → H, θπ)
and (π′ : B′ → H′, θπ′ ). Then, there exists a functor

M(f ,g) : (π′,φH′ ,θπ′ )
Mod → (π,φH ,θπ)Mod

defined on objects by
M(f ,g)((P,Q, φP , ϕP , φQ , τ))

= (P,Q, φπP = φP ◦ (f ⊗ P), ϕπP = ϕP ◦ (g ⊗ P), φπQ = φQ ◦ (f ⊗ Q), τ)

and on morphisms by the identity.

For all generalized invertible 1-cocycle (π : B → H, θπ) , (π, idH) is an isomorphism
between the generalized invertible 1-cocycles (π : B → H, θπ) and (idH : Hπ → H, σπ)
Therefore, the functor

M(π,idH ) : (idH ,Γ
σπ
H
,σπ)Mod → (π,φH ,θπ)Mod

is an isomorphism where M(π−1,idH ) : (π,φH ,θπ)Mod → (idH ,Γ
σπ
H
,σπ)Mod is the inverse.
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Theorem

Let H be a Hopf truss. There exists a functor

GH : HMod →
(idH ,Γ

σH
H1
,σH )

Mod

defined on objects by

GH((M, ψ1
M , ψ

2
M)) = (M,M, φ̂M = Γ

σH
M , ϕ̂M = ψ1

M , φM = ψ2
M , idM)

and on morphisms by GH(f ) = (f , f ).
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Theorem

Let (π : B → H, θπ) be a generalized invertible 1-cocycle. There exists a functor

Hπ : (π,φH ,θπ)Mod → HπMod

defined on objects by

Hπ((M,N, φM , ϕM , φN , γ)) = (M, ψ
1
M = ϕM , ψ

2
M = γ ◦ φN ◦ (π−1 ⊗ γ−1))

and on morphisms by Hπ((h, l)) = h.
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Theorem

Let (π : B → H, θπ) be a generalized invertible 1-cocycle. Then the categories
(π,φH ,θπ)Mod and HπMod are equivalent.

Proof

Hπ ◦ (M(π,idH ) ◦ GHπ ) = id HπMod,

(M(π,idH ) ◦ GHπ ) ◦ Hπ w id
(π,φH ,θπ )Mod.

When we particularize the previous results to modules asocciated to Hopf braces and
invertible 1-cocycles we have the categorical equivalences obtained in:

J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez, A.B. Rodrí-
guez Raposo: Modules over invertible 1-cocycles, Turkish J. Math. 70, 5146-5156
(2024).
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In this section we will assume that C admits equalizers. As a consequence every idem-
potent morphism in C splits, i.e., if q : M → M is a morphism in C such that q = q ◦q,
there exists an object I (q), called the image of q, and morphisms i : I (q) → M and
p : M → I (q) such that q = i ◦ p and p ◦ i = idI (q). The morphisms p and i will be
called a factorization of q. Note that I (q), p and i are unique up to isomorphism.

Definition

Let D be a coalgebra in C. The pair (M, ρM) is a left D-comodule if M is an object in
C and ρM : M → D ⊗M is a morphism in C satisfying

(εD ⊗M) ◦ ρM = idM , (D ⊗ ρM) ◦ ρM = (δ ⊗M) ◦ ρM .

Given two left D-comodules (M, ρM) and (N, ρN), a morphism f : M → N in C is
a morphism of left D-comodules if (D ⊗ f ) ◦ ρM = ρN ◦ f . Left D-comodules with
morphisms of left D-comodules form a category which we denote by DComod.
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Definition

Let D be a coalgebra such that there exits a coalgebra morphism e : K → D. Let
(M, ρM) be a left D-comodule. We define the subobject of coinvariants of M, denoted
by McoD

e , as the equalizer object of ρM and e⊗M. Then, we have an equalizer diagram

- -
-McoD

e M D ⊗M
jeM

ρM

e ⊗M

where jeM denotes the equalizer (inclusion) morphism.

Notation

If H is a Hopf algebra, the unit ηH is a coalgebra morphism. Then, Let (M, ρM) be a
left D-comodule, we will denote the equalizer object of ρM and ηH ⊗M by McoH and
the equalizer morphism by jM .
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Definition

Let B be a non-unital bialgebra. A non-unital left B-Hopf module is a triple (M, ϕM , ρM)
where (M, ϕM) is a non-unital left B-module, (M, ρM) is a left B-comodule and

ϕM ◦ ρM = (µB ⊗ ϕM) ◦ (B ⊗ cB,B ⊗M) ◦ (δB ⊗ ρM)

holds. Non-unital left B-Hopf modules with left linear and colinear morphisms form a
category which we denote by B-Hopf-mod.

Remark

The definition for left H-Hopf modules over a Hopf algebra H is similar changing non-
unital left H-modules by left H-modules. Then, in this case we will denote the category
of H-Hopf modules by H-Hopf-Mod.
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Let H be a Hopf algebra, it easy to show that, if (M, ϕM , ρM) is a left H-Hopf module,
the endomorphism qM : M → M, defined by

qM = ϕM ◦ (λH ⊗M) ◦ ρM

is idempotent and satisfies ρM ◦ qM = ηH ⊗ qM . Therefore, there exists a unique
morphism

tM : M → McoH

such that
tM ◦ jM = qM .

Let I (qM) be the image of the idempotent morphism qM and let iM : I (qM)→ M and
pM : M → I (qM) be the morphisms such that that qM = iM ◦pM and pM ◦ iM = idI (qM ).
The morphism

ωM = tM ◦ iM : I (qM)→ McoH

is an isomorphism with inverse ω−1
M = pM ◦ jM .
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The object H ⊗McoH is a left H-Hopf module with action

ϕH⊗McoH = µH ⊗McoH

and coaction
ρH⊗McoH = δH ⊗McoH .

The Fundamental Theorem of Hopf modules asserts that H⊗McoH is isomorphic to M
in the category H-Hopf-Mod. The isomorphism is defined by

θM = ϕM ◦ (H ⊗ jM) : H ⊗McoH → M

where θ−1
M = (H ⊗ tM) ◦ ρM .
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In the same way as in the case of McoH , if X is an object in C, the tensor product
H ⊗ X , with the action and coaction induced by the product and the coproduct of H,
is a left H-Hopf module. Then, there exists a functor

F = H ⊗− : C → H-Hopf-Mod

called the induction functor.

Also, for all M ∈ H-Hopf-Mod, the construction of McoH is functorial. Thus, there exists
a new functor

G = ( )coH : H-Hopf-Mod → C,

called the functor of coinvariants, such that F a G.

Moreover, F and G induce an equivalence between the categories H-Hopf-Mod and C.
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Definition

Let H = (H1,H2, σH) be a Hopf truss. A left Hopf module over H (left H-Hopf module)
is a 4-tuple (M, ψ1

M , ψ
2
M , ρM) such that:

(i) The triple (M, ψ1
M , ψ

2
M) is a left H-module.

(ii) The triple (M, ψ1
M , ρM) is a left H1-Hopf module.

(iii) The triple (M, ψ2
M , ρM) is a non-unital left H2-Hopf module.

(iv) The identity ψ1
M ◦ (σH ⊗ jM) = ψ2

M ◦ (H ⊗ jM) holds.

A morphism of left Hopf modules over H is a morphism of left H-modules and left
H-comodules. Left Hopf modules over H with morphisms of left Hopf modules form a
category which we denote by H-Hopf-Mod.

Note that, this definition is a generalization to the Hopf truss setting of the notion of
Hopf module over a Hopf brace introduced in

R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf
braces, Linear Multilinear Algebra 70, 5146-5156 (2022).
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Example

Let X be an object in C and let H = (H1,H2, σH) be a Hopf truss. Then, the 4-tuple

(H ⊗ X , ψ1
H⊗X = µ1

H ⊗ X , ψ2
H⊗X = µ2

H ⊗ X , ρH⊗X = δH ⊗ X )

is a left H-Hopf module.

Theorem

Let H be a Hopf truss. There exists a functor V = H ⊗ − : C → H-Hopf, called the
induction functor, defined on objects by

V(X ) = (H ⊗ X , ψ1
H⊗X , ψ

2
H⊗X , ρH⊗X )

and on morphisms by V(f ) = H ⊗ f .

Theorem (Fundamental Theorem of Hopf modules)

Let H be a Hopf truss and let (M, ϕM , ψM , ρM) be an object in H-Hopf-Mod. Then
(M, ψ1

M , ψ
2
M , ρM) and V(McoH1 ) are isomorphic in H-Hopf-Mod.
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Theorem

Let H be a Hopf truss. There exists a functor W = ( )coH : H-Hopf-Mod→ C, called
the functor of coinvariants, defined on objects by

W((M, ψ1
M , ψ

2
M , ρM)) = McoH,

where McoH = McoH1 and on morphisms f : M → N by W(f ) = f coH, where f coH =
f coH1 is the unique morphism such that jN ◦ f coH1 = f ◦ jM .

Theorem

Let H a Hopf truss. The induction functor V = H ⊗ − : C → H-Hopf-Mod is left
adjoint of the functor of coinvariants W = ( )coH : H-Hopf-Mod→ C and they induce
a categorical equivalence between H-Hopf-Mod and C.

If we particularize the previous theorems to the case of Hopf braces we have the Funda-
mental Theorem of Hopf Modules and the associated categorical equivalence obtained
in

R. González Rodríguez: The fundamental theorem of Hopf modules for Hopf
braces, Linear Multilinear Algebra 70, 5146-5156 (2022).
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