Hopf trusses an related structures in a monoidal setting

Ramón González Rodríguez

CENTRO DE INVESTIGACIÓN E TECNOLOXÍA MATEMÁTICA DE GALICIA

Universida_{de}Vigo

Sino-Russian Mathematics Center-JLU Colloquium

May 9, 2024

Ministerio de Ciencia e Innovación. Agencia Estatal de Investigación Unión Europea – Fondo Europeo de Desarrollo Regional PID2020-1151556B-100 Preliminaries and notations Hopf trusses Wesk Twisted post-Hopf algebras and Hopf trusses Wesk Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Index

Preliminaries and notations

- 2 Hopf trusses
- Optimized and generalized invertible 1-cocycles
- Weak Twisted post-Hopf algebras and Hopf trusses
- 5 Weak twisted Relative Rota-Baxter operators and Hopf trusses
- 6 Modules for Hopf trusses
- The Fundamental Theorem of Hopf modules for Hopf trusses

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Preliminaries and notations

Preliminaries and notations

2 Hopf trusses

Bopf trusses and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

6 Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

7 The Fundamental Theorem of Hopf modules for Hopf trusses

Throughout this talk C denotes a strict braided monoidal category with tensor product \otimes , unit object K and braiding c.

Recall that a monoidal category is a category C together with a functor

$$\otimes:\mathsf{C}\times\mathsf{C}\to\mathsf{C}$$

called tensor product, an object ${\boldsymbol{K}}$ of C, called the unit object, and families of natural isomorphisms

$$a_{M,N,P}: (M\otimes N)\otimes P \to M\otimes (N\otimes P), \quad r_M: M\otimes K \to M, \quad I_M: K\otimes M \to M,$$

in C, called associativity, right unit and left unit constraints, respectively, satisfying the Pentagon Axiom and the Triangle Axiom, i.e.,

$$\begin{aligned} \mathsf{a}_{M,N,P\otimes Q} \circ \mathsf{a}_{M\otimes N,P,Q} &= (\mathsf{id}_{M} \otimes \mathsf{a}_{N,P,Q}) \circ \mathsf{a}_{M,N\otimes P,Q} \circ (\mathsf{a}_{M,N,P} \otimes \mathsf{id}_{Q}), \\ (\mathsf{id}_{M} \otimes \mathsf{I}_{N}) \circ \mathsf{a}_{M,K,N} &= \mathsf{r}_{M} \otimes \mathsf{id}_{N}, \end{aligned}$$

where for each object X in C, id_X denotes the identity morphism of X.

A monoidal category is called strict if the constraints of the previous paragraph are identities.

It is a well-known fact that every non-strict monoidal category is monoidal equivalent to a strict one. This lets us to treat monoidal categories as if they were strict and, as a consequence, the results proved in a strict setting hold for every non-strict monoidal category.

> For simplicity of notation, given objects M, N, P in C and a morphism $f: M \to N$. we will write $P \otimes f$ for $id_P \otimes f$ and $f \otimes P$ for $f \otimes id_P$.

A braiding for a strict monoidal category C is a natural family of isomorphisms

$$c_{M,N}: M \otimes N \to N \otimes M$$

subject to the conditions

$$c_{M,N\otimes P} = (N \otimes c_{M,P}) \circ (c_{M,N} \otimes P), \ c_{M\otimes N,P} = (c_{M,P} \otimes N) \circ (M \otimes c_{N,P})$$

for all $M, N, P \in C$.

lf

$$c_{N,M} \circ c_{M,N} = id_{M\otimes N}$$

for all M, N in C, we will say that C is symmetric.

Then the results presented in this talk hold in

- Set, the category of sets.
- F-Vect, the category of vector spaces over a field F.
- BMod, the category of left modules over a commutative ring R.
- $\operatorname{Rep}(G)$, the category of representations of a group G.
- sVect, the category of super-vector spaces.
- B, the braid category.
- HMod, the category of left *H*-modules for a quasitriangular Hopf algebra.
 HYD, the category of left Yetter-Drinfeld modules over a Hopf algebra such that the antipode is an isomorphism.

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

An algebra in C is a triple $A = (A, \eta_A, \mu_A)$ where A is an object in C and $\eta_A : K \to A$ (unit), $\mu_A : A \otimes A \to A$ (product) are morphisms in C such that

$$\mu_{A}\circ (A\otimes \eta_{A})=\textit{id}_{A}=\mu_{A}\circ (\eta_{A}\otimes A), \quad \mu_{A}\circ (A\otimes \mu_{A})=\mu_{A}\circ (\mu_{A}\otimes A)$$

hold.

Definition

Given two algebras $A = (A, \eta_A, \mu_A)$ and $B = (B, \eta_B, \mu_B)$, a morphism $f : A \to B$ in C is an algebra morphism if

$$f \circ \eta_A = \eta_B, \quad \mu_B \circ (f \otimes f) = f \circ \mu_A$$

hold.

If A, B are algebras in C, the tensor product $A \otimes B$ is also an algebra in C where

$$\eta_{A\otimes B} = \eta_A \otimes \eta_B, \quad \mu_{A\otimes B} = (\mu_A \otimes \mu_B) \circ (A \otimes c_{B,A} \otimes B).$$

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

A coalgebra in C is a triple $D = (D, \varepsilon_D, \delta_D)$ where D is an object in C and $\varepsilon_D : D \to K$ (counit), $\delta_D : D \to D \otimes D$ (coproduct) are morphisms in C such that

$$(\varepsilon_D \otimes D) \circ \delta_D = id_D = (D \otimes \varepsilon_D) \circ \delta_D, \quad (\delta_D \otimes D) \circ \delta_D = (D \otimes \delta_D) \circ \delta_D$$

hold.

Definition

If $D = (D, \varepsilon_D, \delta_D)$ and $E = (E, \varepsilon_E, \delta_E)$ are coalgebras, a morphism $f : D \to E$ in C is a coalgebra morphism if

$$\varepsilon_E \circ f = \varepsilon_D, \quad (f \otimes f) \circ \delta_D = \delta_E \circ f$$

hold.

Given D, E coalgebras in C, the tensor product $D \otimes E$ is a coalgebra in C where

$$\varepsilon_{D\otimes E} = \varepsilon_D \otimes \varepsilon_E, \quad \delta_{D\otimes E} = (D \otimes c_{D,E} \otimes E) \circ (\delta_D \otimes \delta_E).$$

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Example

In the category of vector spaces over a field \mathbb{F} we can find interesting examples of coalgebras. For example, if S is a set, with $\mathbb{F}[S]$ we will denote the free \mathbb{F} -vector space on S, i.e.,

$$\mathbb{F}[S] = \bigoplus_{s \in S} \mathbb{F}s.$$

This vector space has a coalgebra structure determined by

$$arepsilon_{\mathbb{F}[S]}(s) = 1_{\mathbb{F}}, \quad \delta_{\mathbb{F}[S]}(s) = s \otimes s.$$

Definition

Let $D = (D, \varepsilon_D, \delta_D)$ be a coalgebra in C. We will say that a morphism $g : K \to D$ is a grouplike morphism if satisfy $\delta_D \circ g = g \otimes g$, $\varepsilon_D \circ g = id_K$.

Definition

Let $(D, \varepsilon_D, \delta_D)$ be a coalgebra in \mathbb{F} -Vect. A grouplike element c of D is a $c \in D$ such that the linear map $g_c : \mathbb{F} \to D$ defined by $g_c(1_{\mathbb{F}}) = c$ is a grouplike morphism in \mathbb{F} -Vect.

In the following we will denote by G(D) the set of grouplike elements of D and G(D) is a subcoalgebra of D.

If S is a set, the coalgebra $\mathbb{F}[S]$ is called the grouplike coalgebra of S and satisfies

 $G(\mathbb{F}[S]) = S.$

Definition

A pointed coalgebra in $\mathbb F\text{-Vect}$ is a coalgebra D whose simple subcoalgebras are one-dimensional.

Then, *D* is pointed if and only if its coradical D_0 (the sum of the simple subcoalgebras of *D*) is the grouplike coalgebra of G(D), i.e., $D_0 = \mathbb{F}[G(D)]$.

Definition

We will say that the coalgebra D is cosemisimple if $D = D_0$.

Therefore, if D is pointed cosemisimple, $D = \mathbb{F}[G(D)]$. On the other hand, if G is a group and $D = \mathbb{F}[G]$, we have that D is pointed and cosemisimple.

Preliminaries and notations Hopf trusses Woak Twisted post-Hopf algebras and Hopf trusses Weak twisted Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let $D = (D, \varepsilon_D, \delta_D)$ be a coalgebra and let $A = (A, \eta_A, \mu_A)$ be an algebra. By

 $\mathcal{H}(D,A)$

we denote the morphisms $f : D \rightarrow A$ in C. With the convolution operation

$$f * g = \mu_A \circ (f \otimes g) \circ \delta_D,$$

 $\mathcal{H}(D, A)$ is an monoid where the unit element is $\eta_A \circ \varepsilon_D = \varepsilon_D \otimes \eta_A$.

We will say that $f: D \to A$ is convolution invertible if there exists $f^{-1}: D \to A$ such that

$$f * f^{-1} = f^{-1} * f = \varepsilon_D \otimes \eta_A.$$

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let A be an algebra. The pair (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C satisfying

$$\varphi_{M} \circ (\eta_{A} \otimes M) = id_{M}, \quad \varphi_{M} \circ (A \otimes \varphi_{M}) = \varphi_{M} \circ (\mu_{A} \otimes M).$$

Given two left A-modules (M, φ_M) and (N, φ_N) , $f : M \to N$ is a morphism of left A-modules if $\varphi_N \circ (A \otimes f) = f \circ \varphi_M$.

Then left A-modules with morphisms of left A-modules form a category that we will denote by ${}_{A}Mod$.

Definition

Let B an object in C such that there exists an associative product $\mu_B : B \otimes B \to B$. We will say that $(M, \phi_M : B \otimes M \to M)$ is a non-unital left B-module if

$$\phi_M \circ (B \otimes \phi_M) = \phi_M \circ (\mu_B \otimes M).$$

A morphism between non-unital left *B*-modules is a left *B*-linear morphism as in the case of morphisms for modules over an algebra. Then non-unital left *B*-modules form a category that we will denote by $_{\rm B}$ mod.

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

A non-unital bialgebra in the category C is a coalgebra $(B, \varepsilon_B, \delta_B)$ with an associative product $\mu_B : B \otimes B \to B$ such that μ_B is a coalgebra morphism. Then the following identities hold:

$$\varepsilon_B \circ \mu_B = \varepsilon_B \otimes \varepsilon_B,$$

$$\delta_B \circ \mu_B = (\mu_B \otimes \mu_B) \circ \delta_{B \otimes B}.$$

A bialgebra in C is an algebra (B, η_B, μ_B) and a coalgebra $(B, \varepsilon_B, \delta_B)$ such that η_B and μ_B are coalgebra morphisms. Then,

$$\varepsilon_B \circ \eta_B = id_K, \quad \delta_B \circ \eta_B = \eta_B \otimes \eta_B$$

also hold.

A morphism between non-unital bialgebras H and B is a morphism $f: H \to B$ in C of coalgebras and multiplicative. A morphism between bialgebras H and B is a morphism $f: H \to B$ in C of algebras and coalgebras.

With the composition of morphisms in C we can define a category whose objects are non-unital bialgebras (bialgebras) and whose morphisms are morphisms of non-unital bialgebras (bialgebras). We denote this category by bialg (Bialg).

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let *B* a non-unital bialgebra and let *A* be an algebra in C. We will say that (A, ϕ_A) is a non-unital left *B*-module algebra if it is a non-unital left *B*-module with action $\phi_A : B \otimes A \to A$ such that

$$\phi_A \circ (B \otimes \eta_A) = \varepsilon_B \otimes \eta_A$$

and

$$\phi_{\mathcal{A}} \circ (\mathcal{B} \otimes \mu_{\mathcal{A}}) = \mu_{\mathcal{A}} \circ (\phi_{\mathcal{A}} \otimes \phi_{\mathcal{A}}) \circ (\mathcal{B} \otimes c_{\mathcal{B},\mathcal{A}} \otimes \mathcal{A}) \circ (\delta_{\mathcal{B}} \otimes \mathcal{A} \otimes \mathcal{A})$$

hold.

If B is a bialgebra, we will say that (A, ϕ_A) is a left B-module algebra if (A, ϕ_A) is a left B-module and the two previous conditions hold.

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let *B* be a non-unital bialgebra and $D = (D, \varepsilon_D, \delta_D)$ a coalgebra in C. A pair (D, φ_D) is said to be a non-unital left *B*-module coalgebra if (D, φ_D) is a non-unital left *B*-module and the following equalities hold:

 $\varepsilon_D \circ \varphi_D = \varepsilon_B \otimes \varepsilon_D,$

and

$$\delta_D \circ \varphi_D = (\varphi_D \otimes \varphi_D) \circ \delta_{B \otimes D}.$$

In case that B is a bialgebra, a non-unital left B-module coalgebra (D, φ_D) is said to be a left B-module coalgebra if (D, φ_D) is a left B-module.

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let *H* be a bialgebra in C. If there exists a morphism $\lambda_H : H \to H$ in C, called the antipode of *H*, satisfying that λ_H is the inverse of id_H in $\mathcal{H}(H, H)$, i.e.,

$$id_H * \lambda_H = \eta_H \circ \varepsilon_H = \lambda_H * id_H,$$

we say that H is a Hopf algebra.

A morphism of Hopf algebras is an bialgebra morphism. We can define a category whose objects are Hopf algebras and whose morphisms are morphisms of Hopf algebras. We denote this category by

Hopf

Hopf trusses Hopf trusses and generalized invertible 1-cocycles Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

If H is a Hopf algebra, the antipode is antimultiplicative and anticomultiplicative

$$\lambda_H \circ \mu_H = \mu_H \circ (\lambda_H \otimes \lambda_H) \circ c_{H,H}, \quad \delta_H \circ \lambda_H = c_{H,H} \circ (\lambda_H \otimes \lambda_H) \circ \delta_{H,H}$$

and leaves the unit and counit invariant, i.e.,

$$\lambda_H \circ \eta_H = \eta_H, \ \varepsilon_H \circ \lambda_H = \varepsilon_H,$$

A Hopf algebra is cocommutative if

$$\delta_H = c_{H,H} \circ \delta_H.$$

It is easy to see that in this case

$$\lambda_H \circ \lambda_H = id_H.$$

Note that, if $f: H \rightarrow D$ is a Hopf algebra morphism the following equality holds:

$$\lambda_D \circ f = f \circ \lambda_H.$$

Preliminaries and notations

2 Hopf trusses

- Bopf trusses and generalized invertible 1-cocycles
- Weak Twisted post-Hopf algebras and Hopf trusses
- 6 Weak twisted Relative Rota-Baxter operators and Hopf trusses
- 6 Modules for Hopf trusses
- The Fundamental Theorem of Hopf modules for Hopf trusses

• T. Brzeziński: Trusses: between braces and rings, Trans. Am. Math. Soc. 372, 4149-4176 (2019). C = F-Vect

Definition

Let $(H, \varepsilon_H, \delta_H)$ be a coalgebra in C. Assume that there are an algebra structure (H, η_H, μ_H^1) , a product μ_H^2 : $H \otimes H \to H$ and two endomorphism of H denoted by λ_H and σ_H . We will say that

$$(H,\eta_H,\mu_H^1,\mu_H^2,\varepsilon_H,\delta_H,\lambda_H,\sigma_H)$$

is a Hopf truss if:

- (i) $H_1 = (H, \eta_H, \mu_H^1, \varepsilon_H, \delta_H, \lambda_H)$ is a Hopf algebra in C.
- (ii) $H_2 = (H, \mu_H^2, \varepsilon_H, \delta_H)$ is a non-unital bialgebra in C.

(iii) The morphism σ_H is a coalgebra morphism and the following equality holds:

$$\mu_{H}^{2} \circ (H \otimes \mu_{H}^{1}) = \mu_{H}^{1} \circ (\mu_{H}^{2} \otimes \Gamma_{H_{1}}^{\sigma_{H}}) \circ (H \otimes c_{H,H} \otimes H) \circ (\delta_{H} \otimes H \otimes H),$$

where

$$\Gamma_{H_{\mathbf{1}}}^{\sigma_{H}} = \mu_{H}^{\mathbf{1}} \circ ((\lambda_{H} \circ \sigma_{H}) \otimes \mu_{H}^{\mathbf{2}}) \circ (\delta_{H} \otimes H).$$

Definition

We will say that a Hopf truss is cocommutative if the coalgebra $(H, \varepsilon_H, \delta_H)$ is cocommutative.

Note that, a Hopf truss is a Hopf brace in the sense of I. Angiono, C. Galindo and L. Vendramin

 I. Angiono, C. Galindo, L. Vendramin: Hopf braces and Yang-Baxter operators, Proc. Am. Math. Soc. 145, 1981-1995 (2017). C = F-Vect

if σ_H is the identity and there exists a morphism $\lambda_H^2: H \to H$ such that

$$H_2 = (H, \eta_H, \mu_H^2, \varepsilon_H, \delta_H, \lambda_H^2)$$

is a Hopf algebra.

Notation

Given a Hopf truss, we will denote it by $\mathbb{H} = (H_1, H_2, \sigma_H)$. The morphism σ_H is called the cocycle of \mathbb{H} .

The cocycle σ_H of a Hopf truss \mathbb{H} is fully determined by η_H and the product μ_H^2 in the following way:

$$\sigma_H = \mu_H^2 \circ (H \otimes \eta_H).$$

Then, as a consequence of the associativity for the product μ_{H}^{2} , we have that

$$\sigma_H \circ \mu_H^2 = \mu_H^2 \circ (H \otimes \sigma_H)$$

holds. Finally, we know that the pair

 $(H_1, \Gamma_{H_1}^{\sigma_H})$

is a non-unital left H_2 -module algebra.

Definition

Given two Hopf trusses \mathbb{H} and \mathbb{B} , a morphism f between the two underlying objects is called a morphism of Hopf trusses if $f: H_1 \to B_1$ is a Hopf algebra morphism and $f: H_2 \to B_2$ is a morphism of non-unital bialgebras. Then

$$\sigma_B \circ f = f \circ \sigma_H$$

holds.

Hopf trusses together with morphisms of Hopf trusses form a category which we denote by $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$

HTr

It is obvious that Hopf braces with morphisms of Hopf braces form a category which we denote by HBr that is a full subcategory of HTr.

Example

A skew truss is a set T with two binary operations \diamond_1 and \diamond_2 and a map $\omega_T : T \to T$ (called the cocycle) such that the pair $T_1 = (T, \diamond_1)$ is a group with unit 1_{\diamond_1} , $T_2 = (T, \diamond_2)$ is a semigroup and the following identity

$$a \diamond_2 (b \diamond_1 c) = (a \diamond_2 b) \diamond_1 \omega_T (a)^{\diamond_1} \diamond_1 (a \diamond_2 c)$$

holds for all $a, b, c \in T$. We will denote the previous skew truss by $\mathbb{T} = (T_1, T_2, \omega_T)$. A morphism f between two skew trusses $\mathbb{T} = (T_1, T_2, \omega_T)$ and $\mathbb{S} = (S_1, S_2, \omega_S)$ is a map f between the two underlying sets such that f is a morphism of groups between T_1 and S_1 and of semigroups between T_2 and S_2 . With

SkTr

we will denote the category of skew trusses.

Then, in Set,

$$SkTr = HTr$$

Let $\mathbb F$ be a field and C= $\mathbb F\text{-Vect}.$ There exists a functor

 P_{skt} : SkTr \rightarrow HTr

given by

$$\mathsf{P}_{skt}(\mathbb{T}) = (\mathbb{F}[T_1], \mathbb{F}[T_2], \sigma_{\mathbb{F}[T]}),$$

where $\sigma_{\mathbb{F}[T]}$ is the linear extension of ω_T and $\lambda_{\mathbb{F}[T]} = ()^{\diamond_1}$, on objects and by $\mathsf{P}_{skt}(f) = \mathbb{F}[f]$ on morphisms.

Let $\mathbb{H} = (H_1, H_2, \sigma_H)$ a Hopf truss in \mathbb{F} -Vect. There exists a functor

 R_{ht} : HTr \rightarrow SkTr

defined by

$$\mathsf{R}_{ht}(\mathbb{H}) = (\mathsf{G}(H_1), \mathsf{G}(H_2), \omega_{\mathsf{G}(H)})$$

on objects and by

 $\mathsf{R}_{ht}(f) = \mathsf{G}(f)$

on morphisms, where $\omega_{G(H)}$ the restriction of σ_H to G(H) and G(f) the restriction of f to G(H)

Definition

Let \mathbb{F} be a field and let \mathbb{H} be a Hopf truss in \mathbb{F} -Vect. We will say that \mathbb{H} is pointed cosemisimple if the its subjacent coalgebra $(H, \varepsilon_H, \delta_H)$ is pointed and cosemisimple.

Theorem

Let \mathbb{F} be a field and let P_{skt} and R_{ht} be the functors defined in the previous slide. Then,

 $P_{skt} \dashv R_{ht}$

and this adjunction induces an equivalence of categories between SkTr and the full subcategory of HTr of all pointed cosemisimple Hopf trusses in $\mathbb{F}\text{-Vect}.$

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Hopf trusses and generalized invertible 1-cocycles

Preliminaries and notations

2 Hopf trusses

Optimized and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let $H = (H, \eta_H, \mu_H, \varepsilon_H, \delta_H, \lambda_H)$ be a Hopf algebra in C and let $B = (B, \mu_B, \varepsilon_B, \delta_B)$ be a non-unital bialgebra in C. Assume that H is a non-unital left B-module algebra with action $\phi_H : B \otimes H \to H$. Let $\pi : B \to H$ be coalgebra morphism. We will say that π is an generalized invertible 1-cocycle if it is an isomorphism and there exist a coalgebra endomorphism $\theta_\pi : B \to B$ such that

$$\pi \circ \mu_B = \mu_H \circ ((\pi \circ \theta_\pi) \otimes \phi_H) \circ (\delta_B \otimes \pi)$$

holds.

Definition

Let $\pi : B \to H$ and $\pi' : B' \to H'$ be generalized invertible 1-cocycles. A morphism between them is a pair (f, g) where $f : B \to B'$ is a morphism of non-unital bialgebras and $g : H \to H'$ is a morphism of Hopf algebras satisfying the following identities:

$$f \circ \theta_{\pi} = \theta_{\pi'} \circ f, \quad g \circ \pi = \pi' \circ f, \quad g \circ \phi_H = \phi_{H'} \circ (f \otimes g).$$

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Then, with these morphisms, generalized invertible 1-cocycles form a category denoted by GIC. In the following lines an object in GIC will also be denoted by the triple

 $(\pi: B \to H, \theta_{\pi}).$

Definition

Note that if $(\pi : B \to H, \theta_{\pi})$ is a generalized invertible 1-cocycle such that B is a Hopf algebra, (H, ϕ_H) is a left B-module algebra and $\theta_{\pi} = id_B$, $(\pi : B \to H, id_B)$ is an invertible 1-cocycle. If we denote the category of invertible 1-cocycles by IC, it is obvious that it is a full subcategory of GIC.

Theorem

The categories GIC and HTr are equivalent.

Proof

Let $\mathbb{H} = (H_1, H_2, \sigma_H)$ be an object in HTr. Then, $(id_H : H_2 \rightarrow H_1, \theta_{id_H} = \sigma_H)$ is a generalized invertible 1-cocycle.

On the other hand, let $\mathbb{H} = (H_1, H_2, \sigma_H)$ and $\mathbb{H}' = (H'_1, H'_2, \sigma_{H'})$ be objects in HTr and let $f : \mathbb{H} \to \mathbb{H}'$ be a morphism between them. The pair (f, f) is a morphism in GIC between $(id_H : H_2 \to H_1, \sigma_H)$ and $(id_{H'} : H'_2 \to H'_1, \sigma_{H'})$.

Therefore, there exists a functor

$$\mathsf{E}:\mathsf{HTr}\to\mathsf{GIC}$$

defined on objects by $E(\mathbb{H}) = (id_H : H_2 \to H_1, \sigma_H)$ and on morphisms by E(f) = (f, f).

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Let $(\pi : B \to H, \theta_{\pi})$ be an object in GIC. Define

$$\mu_H^{\pi} := \pi \circ \mu_B \circ (\pi^{-1} \otimes \pi^{-1})$$

and $\sigma_{\pi} := \pi \circ \theta_{\pi} \circ \pi^{-1}$. Then, $\mathbb{H}_{\pi} = (H, H_{\pi}, \sigma_{\pi})$, where

$$H_{\pi} = (H, \mu_{H}^{\pi}, \varepsilon_{H}, \delta_{H}),$$

is an object in HTr.

Also, if $(f,g): (\pi: B \to H, \theta_{\pi}) \to (\pi': B' \to H', \theta_{\pi'})$ is a morphism in GIC, g is a morphism in HTr between \mathbb{H}_{π} and $\mathbb{H}'_{\pi'}$ As a consequence of these facts, we have a functor

$$\mathsf{Q}: \mathsf{GIC} \to \mathsf{HTr}$$

defined by $\mathsf{Q}((\pi:B o H, heta_\pi))=\mathbb{H}_\pi$ on objects and by $\mathsf{Q}((f,g))=g$ on morphisms.

These functors induce an equivalence between the two categories because, clearly, $QE=\textit{id}_{HTr}$ and $EQ \simeq ld_{GIC}.$

Corollary

The categories IC and HBr are equivalent.

The previous result was proved in:

 I. Angiono, C. Galindo, L. Vendramin: Hopf braces and Yang-Baxter operators, Proc. Am. Math. Soc. 145, 1981-1995 (2017). C = F-Vect

Weak Twisted post-Hopf algebras and Hopf trusses

Preliminaries and notations

2 Hopf trusses

Bopf trusses and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

- Y. Li, Y. Sheng and R. Tang: Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation, J. Noncommut. Geom 145, 1981-1995 (2024) (in press: DOI 10.4171/JNCG/537).
- S. Wang: (Weak) Twisted post-groups, skew trusses and rings arXiv:2307.10535. (2024).

$\mathsf{C} = \mathbb{F}\text{-}\mathsf{Vect}$

Definition

A weak twisted post-Hopf algebra in C is a triple (H, m_H, Φ_H) where H is a Hopf algebra in C and $m_H: H \otimes H \to H$ and $\Phi_H: H \to H$ are morphisms in C satisfying the following conditions:

(i) m_H is a coalgebra morphism, which means that the following equalities hold:

$$(1.1) \ \delta_H \circ m_H = (m_H \otimes m_H) \circ (H \otimes c_{H,H} \otimes H) \circ (\delta_H \otimes \delta_H),$$

(i.2)
$$\varepsilon_H \circ m_H = \varepsilon_H \otimes \varepsilon_H$$
.

(ii) Φ_H is a coalgebra morphism, that is to say:

(ii.1)
$$\delta_H \circ \Phi_H = (\Phi_H \otimes \Phi_H) \circ \delta_H$$

(ii.2) $\varepsilon_H \circ \Phi_H = \varepsilon_H$.

(iii)
$$\Phi_H \circ \mu_H \circ (\Phi_H \otimes m_H) \circ (\delta_H \otimes H) = \mu_H \circ (\Phi_H \otimes m_H) \circ (\delta_H \otimes \Phi_H).$$

(iv)
$$m_H \circ (H \otimes m_H) = m_H \circ ((\mu_H \circ (\Phi_H \otimes m_H) \circ (\delta_H \otimes H)) \otimes H).$$

(v)
$$m_H \circ (H \otimes \mu_H) = \mu_H \circ (m_H \otimes m_H) \circ (H \otimes c_{H,H} \otimes H) \circ (\delta_H \otimes H \otimes H).$$

The morphism Φ_H will be called the cocycle of the weak twisted post-Hopf algebra H.

Definition

Let (H, m_H, Φ_H) and (B, m_B, Φ_B) be weak twisted post-Hopf algebras in C. We will say that $f: (H, m_H, \Phi_H) \rightarrow (B, m_B, \Phi_B)$ is a morphism of weak twisted post-Hopf algebras if $f: H \rightarrow B$ is a Hopf algebra morphism such that

$$f \circ m_H = m_B \circ (f \otimes f), \quad \Phi_B \circ f = f \circ \Phi_H.$$

Therefore, weak twisted post-Hopf algebras give rise to a category that we will denote by $% \left({{{\mathbf{x}}_{i}}} \right)$

wt-Post-Hopf.

If the underlying Hopf algebra is cocommutative, the structure (H, m_H, Φ_H) is referred to as a cocommutative weak twisted post-Hopf algebra. The corresponding full subcategory is denoted as

coc-wt-Post-Hopf.

Remark

Note that the definition of weak twisted post-Hopf algebras proposed by S. Wang in the category $C = \mathbb{F}$ -Vect, always requires cocommutativity of the underlying Hopf algebra. In the previous definition, this requirement was omitted.

Theorem

Let (H, m_H, Φ_H) be an object in wt-Post-Hopf. If

 $(\star) (m_H \otimes H) \circ (H \otimes c_{H,H}) \circ ((c_{H,H} \circ \delta_H) \otimes H) = (m_H \otimes H) \circ (H \otimes c_{H,H}) \circ (\delta_H \otimes H).$

holds, then $\overline{H} = (H, \overline{\mu}_H, \varepsilon_H, \delta_H)$ is a non-unital bialgebra in C, where

 $\overline{\mu}_H \coloneqq \mu_H \circ (\Phi_H \otimes m_H) \circ (\delta_H \otimes H).$

Remark

If C is a symmetric, condition (*) means that (H, m_H) is in the cocommutativity class of \overline{H} following the notion introduced in:

 J.N. Alonso Álvarez, J.M. Fernández Vilaboa, R. González Rodríguez: On the (co)-commutativity class of a Hopf algebra and crossed products in a braided category, Comm. Algebra 29, 12, 5857-5878 (2001). Preliminaries and notations Hopf trusses Most Twisted post Hopf algebras and Hopf trusses Weak Twisted post Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

Let (H, m_H, Φ_H) be an object in wt-Post-Hopf such that (\star) holds. Then, the triple

$$\overline{\mathbb{H}} = (H, \overline{H}, \Phi_H)$$

is an object in HTr.

As a consequence, if we denote by wt-Post-Hopf^{*} to the full subcategory of wt-Post-Hopf whose objects satisfy (*), then there exists a functor

 $F: wt-Post-Hopf^* \longrightarrow HTr$

defined on objects by

$$F((H, m_H, \Phi_H)) = \mathbb{H}$$

and on morphisms by the identity.

Preliminaries and notations	
Hopf trusses	
Hopf trusses and generalized invertible 1-cocycles	
Weak Twisted post-Hopf algebras and Hopf trusses	
Weak twisted Relative Rota-Baxter operators and Hopf trusses	
Modules for Hopf trusses	
The Fundamental Theorem of Hopf modules for Hopf trusses	

Theorem

Let $\mathbb{H} = (H_1, H_2, \sigma_H)$ be an object in HTr such that the condition

$$(\star) \ (\Gamma_{H_1}^{\sigma_H} \otimes H) \circ (H \otimes c_{H,H}) \circ ((c_{H,H} \circ \delta_H) \otimes H)$$

$$= (\Gamma_{H_{1}}^{\sigma_{H}} \otimes H) \circ (H \otimes c_{H,H}) \circ (\delta_{H} \otimes H)$$

holds. Under these hypothesis, $(H_1, \Gamma_{H_1}^{\sigma_H}, \sigma_H)$ is an object in wt-Post-Hopf^{*}.

Remark

When C is symmetric, note that (*) means that $(H_1, \Gamma_{H_1}^{\sigma_H})$ is in the cocommutativity class of H_2 .

From now on, let's denote by HTr^* to the full subcategory of HTr whose objects satisfy condition (*). Therefore, there exists a functor

 $G: HTr^* \longrightarrow wt-Post-Hopf^*$

acting on objects by $G(\mathbb{H}) = (H_1, \Gamma_{H_1}^{\sigma_H}, \sigma_H)$ and on morphisms by the identity.

Remark

Note also that if (H, m_H, Φ_H) is an object in wt-Post-Hopf^{*}, the Hopf truss $F((H, m_H, \Phi_H)) = \overline{\mathbb{H}}$ belongs to the category HTr^{*}, so F admits a factorization from wt-Post-Hopf^{*} to HTr^{*}.

Theorem

The categories wt-Post-Hopf* and HTr* are isomorphic.

Corollary

Categories coc-wt-Post-Hopf and coc-HTr are isomorphic.

Weak twisted Relative Rota-Baxter operators and Hopf trusses

Preliminaries and notations

2 Hopf trusses

Bopf trusses and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

5 Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

7 The Fundamental Theorem of Hopf modules for Hopf trusses

- M. Goncharov: Rota-Baxter operators on cocommutative Hopf algebras, J. Algebra 582, 39-56 (2021).
- Y. Li, Y. Sheng and R. Tang: Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation, J. Noncommut. Geom 145, 1981-1995 (2024) (in press: DOI 10.4171/JNCG/537).

 $\mathsf{C} = \mathbb{F}\text{-}\mathsf{Vect}$

Definition

Let $H = (H, \eta_H, \mu_H, \varepsilon_H, \delta_H, \lambda_H)$ be a Hopf algebra and let $B = (B, \mu_B, \varepsilon_B, \delta_B)$ be a non-unital bialgebra in C. Suppose that there exists a morphism $\varphi_H : B \otimes H \to H$ such that (H, φ_H) is a non-unital left *B*-module algebra-coalgebra. We will say that a coalgebra morphism

$$T: H \to B$$

is a weak twisted relative Rota-Baxter operator if there exists $\Psi_H : H \to H$ a coalgebra morphism, called the cocycle of T, such that the following conditions hold:

- (i) $\mu_B \circ (T \otimes T) = T \circ \mu_H \circ (\Psi_H \otimes (\varphi_H \circ (T \otimes H))) \circ (\delta_H \otimes H),$
- (ii) $\Psi_H \circ \mu_H \circ (\Psi_H \otimes (\varphi_H \circ (T \otimes H))) \circ (\delta_H \otimes H) = \mu_H \circ (\Psi_H \otimes (\varphi_H \circ (T \otimes H))) \circ (\delta_H \otimes \Psi_H).$

In what follows we will denote weak twisted relative Rota-Baxter operators by

 $(\begin{array}{c}H\\(T \downarrow , \varphi_H, \Psi_H).\\B\end{array}$

If we define \mathfrak{m}_H by

$$\mathfrak{m}_H = \varphi_H \circ (T \otimes H) : H \otimes H \to H,$$

conditions (i) and (ii) of previous definition are equivalent to

(i)
$$\mu_B \circ (T \otimes T) = T \circ \mu_H \circ (\Psi_H \otimes \mathfrak{m}_H) \circ (\delta_H \otimes H),$$

(ii)
$$\Psi_H \circ \mu_H \circ (\Psi_H \otimes \mathfrak{m}_H) \circ (\delta_H \otimes H) = \mu_H \circ (\Psi_H \otimes \mathfrak{m}_H) \circ (\delta_H \otimes \Psi_H).$$

Definition

Let
$$(T \downarrow, \varphi_H, \Psi_H)$$
 and $(T' \downarrow, \varphi_{H'}, \Psi_{H'})$ be weak twisted relative Rota-Baxter
B B'

operators. We will say that

$$\begin{array}{ccc} H & H' \\ (f,g) \colon (T \ \begin{array}{c} H \\ \downarrow \\ B \end{array}, \varphi_H, \Psi_H) \to (T' \ \begin{array}{c} H' \\ \downarrow \\ B' \end{array}, \varphi_{H'}, \Psi_{H'}), \\ \end{array}$$

where $f: H \to H'$ is a Hopf algebra morphism and $g: B \to B'$ is a morphism of nonunital bialgebras, is a morphism of weak twisted relative Rota-Baxter operators if the following conditions hold:

$$T' \circ f = g \circ T, \quad f \circ \Psi_H = \Psi_{H'} \circ f, \quad f \circ \varphi_H = \varphi_{H'} \circ (g \otimes f).$$

So, weak twisted relative Rota-Baxter operators give rise to a category that we will denote by wtr-RB.

Remark

 $\begin{array}{c} H\\ {\sf Consider} \ (\mathcal{T} \ \ \downarrow \ \ , \varphi_H, \Psi_H) \ {\sf a} \ {\sf weak} \ {\sf twisted} \ {\sf relative} \ {\sf Rota-Baxter} \ {\sf operator.} \ {\sf Due} \ {\sf to} \ {\sf being} \\ B\\ \mathcal{T} \ {\sf a} \ {\sf coalgebra} \ {\sf morphism} \ {\sf and} \ (H, \varphi_H) \ {\sf a} \ {\sf non-unital} \ {\sf left} \ B-{\sf module} \ {\sf algebra-coalgebra}, \ {\sf it} \end{array}$

is straightforward to prove that the following equalities hold:

$$\mathfrak{m}_{H} \circ (H \otimes \eta_{H}) = \varepsilon_{H} \otimes \eta_{H},$$
$$\mathfrak{m}_{H} \circ (H \otimes \mu_{H}) = \mu_{H} \circ (\mathfrak{m}_{H} \otimes \mathfrak{m}_{H}) \circ \delta_{H \otimes H}$$
$$\varepsilon_{H} \circ \mathfrak{m}_{H} = \varepsilon_{H} \otimes \varepsilon_{H},$$
$$\delta_{H} \circ \mathfrak{m}_{H} = (\mathfrak{m}_{H} \otimes \mathfrak{m}_{H}) \circ \delta_{H \otimes H}.$$

Moreover, the equality

$$\mathfrak{m}_{H} \circ ((\mu_{H} \circ (\Psi_{H} \otimes \mathfrak{m}_{H}) \circ (\delta_{H} \otimes H)) \otimes H) = \mathfrak{m}_{H} \circ (H \otimes \mathfrak{m}_{H})$$

also holds.

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted post-Hopf algebras and Hopf trusses Modules for Hopf trusses Modules for Hopf trusses

Remark

Note that if (f, g) is a morphism between the weak twisted relative Rota-Baxter ope- H H'rators $(T \downarrow , \varphi_H, \Psi_H)$ and $(T' \downarrow , \varphi_{H'}, \Psi_{H'})$, then B $f \circ \mathfrak{m}_H = \mathfrak{m}_{H'} \circ (f \otimes f)$ holds.

Theorem Let $(T \downarrow_{B}^{H}, \varphi_{H}, \Psi_{H})$ be a weak twisted relative Rota-Baxter operator such that $(\star) (\mathfrak{m}_{H} \otimes H) \circ (H \otimes c_{H,H}) \circ ((c_{H,H} \circ \delta_{H}) \otimes H)$ $= (\mathfrak{m}_{H} \otimes H) \circ (H \otimes c_{H,H}) \circ (\delta_{H} \otimes H)$ holds. Then, $\widetilde{H} = (H, \widetilde{\mu}_{H}, \varepsilon_{H}, \delta_{H})$, where

$$\widetilde{\mu}_H \coloneqq \mu_H \circ (\Psi_H \otimes \mathfrak{m}_H) \circ (\delta_H \otimes H),$$

is a non-unital bialgebra in C.

Remark

Note that, (H, \mathfrak{m}_H) is a non-unital left \widetilde{H} -module. Then, if C is symmetric, we can say that (H, \mathfrak{m}_H) is in the cocommutativity class of \widetilde{H} because (\star) holds.

Preliminaries and notations Hopf trusses Wesk Twisted post-Hopf algebras and Hopf trusses Wesk Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem
Let
$$(T \downarrow_{B}, \varphi_{H}, \Psi_{H})$$
 be a weak twisted relative Rota-Baxter operator such that (*)
holds. Then, the triple $\widetilde{\mathbb{H}} = (H, \widetilde{H}, \Psi_{H})$ is an object in HTr*.

Remark

Then, if we denote by wtr-RB^{\star} to the full subcategory of wtr-RB of objects satisfying the condition (\star), there exists a functor

$$\Omega: wtr-RB^* \longrightarrow HTr^*$$

defined on objects by

$$\Omega((T \ \stackrel{H}{\downarrow}, \varphi_H, \Psi_H)) = \widetilde{\mathbb{H}}$$

and on morphisms by $\Omega((f,g)) = f$.

Theorem

Let $\mathbb{H} = (H_1, H_2, \sigma_H)$ be an object in HTr^{*}. Then, the triple

$$(id_{H} \downarrow I_{H_{2}}, \Gamma_{H_{1}}^{\sigma_{H}}, \sigma_{H})$$

is a weak twisted relative Rota-Baxter operator satisfying condition (\star) .

Remark

Thus, from the above theorem, it follows that there exists a functor

$$\Lambda : HTr^* \longrightarrow wtr-RB^*$$

acting on objects by

$$\Lambda(\mathbb{H}) = (id_H \downarrow_{H_2}, \Gamma_{H_1}^{\sigma_H}, \sigma_H)$$

and on morphisms by $\Lambda(f) = (f, f)$.

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

The functor Λ is left adjoint to the functor Ω .

Remark

Consider the full subcategory of wtr-RB^{*} consisting of all weak twisted relative Rota-H Baxter operators ($T \downarrow , \varphi_H, \Psi_H$), such that T is an isomorphism in C. We will denote B this subcategory by

wtr-RB^{*}_{iso}.

Moreover, take into account that the image of the functor $\boldsymbol{\Lambda}$ are in this subcategory we have a functor

$$\Lambda : HTr^* \longrightarrow wtr-RB_{iso}^*$$
.

Thus, if we denote by Ω' the restriction of functor Ω to the subcategory wtr-RB_iso, the following result states that Λ and Ω' give rise to a categorical equivalence between wtr-RB_iso and HTr*.

Theorem

The categories HTr* and wtr-RB^{*}_{iso} are equivalent.

Corollary

The categories HTr^* , wtr- RB_{iso}^* and wt-Post-Hopf^{*} are equivalent.

Corollary

The categories coc-HTr and coc-wtr-RB_{iso} are equivalent.

Corollary

The categories coc-HTr, coc-wtr-RB_{iso} and coc-wt-Post-Hopf are equivalent.

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Modules for Hopf trusses

Preliminaries and notations

2 Hopf trusses

Bopf trusses and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

Definition

Let \mathbb{H} be a Hopf truss. A left \mathbb{H} -module is a triple (M, ψ_M^1, ψ_M^2) , where (M, ψ_M^1) is a left H_1 -module, (M, ψ_M^2) is a non-unital left H_2 -module and the following identity

$$\psi_{M}^{2} \circ (H \otimes \psi_{M}^{1}) = \psi_{M}^{1} \circ (\mu_{H}^{2} \otimes \Gamma_{M}^{\sigma_{H}}) \circ (H \otimes c_{H,H} \otimes M) \circ (\delta_{H} \otimes H \otimes M)$$

holds, where

$$\Gamma_M^{\sigma_H} = \psi_M^1 \circ ((\lambda_H \circ \sigma_H) \otimes \psi_M^2) \circ (\delta_H \otimes M).$$

Given two left \mathbb{H} -modules (M, ψ_M^1, ψ_M^2) and (N, ψ_N^1, ψ_N^2) , a morphism $f : M \to N$ is called a morphism of left \mathbb{H} -modules if f is a morphism of left H_1 -modules and left nonunital H_2 -modules. Left \mathbb{H} -modules with morphisms of left \mathbb{H} -modules form a category which we denote by

 $\mathbb{H}\mathsf{Mod}.$

Examples

- (i) Let \mathbb{H} be a Hopf truss. The triple $(H, \psi_{H}^{1} = \mu_{H}^{1}, \psi_{H}^{2} = \mu_{H}^{2})$ is an example of left \mathbb{H} -module. Also, if K is the unit object of C, $(K, \psi_{K}^{1} = \varepsilon_{H}, \psi_{K}^{2} = \varepsilon_{H})$ is a left \mathbb{H} -module called the trivial module.
- (ii) If X is an object in C, $\mathbb{H} \otimes X = (H \otimes X, \psi^1_{H \otimes X} = \mu^1_H \otimes X, \psi^2_{H \otimes X} = \mu^2_H \otimes X)$ is an example of left \mathbb{H} -module. Also, if $f : X \to X'$ is a morphism in C, $H \otimes f$ is a morphism in \mathbb{H} Mod between $\mathbb{H} \otimes X$ and $\mathbb{H} \otimes X'$. Therefore, there exist a functor, called the induction functor, $\mathbb{H} \otimes -: C \to \mathbb{H}$ Mod defined on objects by

$$\mathbb{H}\otimes -(X)=\mathbb{H}\otimes X$$

and on morphisms by $\mathbb{H} \otimes -(f) = \mathbb{H} \otimes f$.

Remark

If the a Hopf truss \mathbb{H} is a Hopf brace and we assume that a (M, ψ_M^2) is a left H_2 -module, we obtain the definition of module over a Hopf brace introduced in

• R. González Rodríguez: The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70, 5146-5156 (2022).

Definition

Let $(\pi: B \to H, \theta_{\pi})$ be a generalized invertible 1-cocycle. A left module over

$$(\pi: B \to H, \theta_{\pi})$$

is a 6-tuple $(M, N, \phi_M, \varphi_M, \phi_N, \gamma)$ where:

- (i) $\phi_M : B \otimes M \to M$ is a morphism in C.
- (ii) (M, φ_M) is a left *H*-module.
- (iii) (N, ϕ_N) is a non-unitary left *B*-module.
- (iv) The equality

 $\phi_{M} \circ (B \otimes \varphi_{M}) = \varphi_{M} \circ (\phi_{H} \otimes \phi_{M}) \circ (B \otimes c_{A,H} \otimes M) \circ (\delta_{B} \otimes H \otimes M).$

holds.

(v) $\gamma: N \to M$ is an isomorphism in C such that

$$\gamma \circ \phi_{\mathsf{N}} = \varphi_{\mathsf{M}} \circ ((\pi \circ \theta_{\pi}) \otimes \phi_{\mathsf{M}}) \circ (\delta_{\mathsf{B}} \otimes \gamma).$$

Definition

Let $(M, N, \phi_M, \varphi_M, \phi_N, \gamma)$ and $(M', N', \phi_{M'}, \varphi_{M'}, \phi_{N'}, \gamma')$ be left modules over a generalized invertible 1-cocycle $(\pi : B \to H, \theta_{\pi})$. A morphism between them is a pair (h, I) of morphisms in C such that:

- (i) The morphism $h: M \to M'$ satisfies $h \circ \phi_M = \phi_{M'} \circ (B \otimes h)$ and is left *H*-linear.
- (ii) The morphism $I: N \to N'$ is left *B*-linear.
- (iii) The following identity holds:

$$h \circ \gamma = \gamma' \circ I.$$

With the obvious composition of morphisms, left modules over a generalized invertible 1-cocycle $(\pi : B \to H, \theta_{\pi})$ with action ϕ_H form a category that we will denote by

$$(\pi,\phi_H, heta_\pi)$$
Mod

If $(\pi : B \to H, \theta_{\pi})$ is a generalized invertible 1-cocycle, the 6-tuple $(H, B, \phi_H, \mu_H, \mu_B, \pi)$ is an example of left module over $(\pi : B \to H, \theta_{\pi})$.

Theorem

Let (f,g) be a morphism between the generalized invertible 1-cocycles $(\pi : B \to H, \theta_{\pi})$ and $(\pi' : B' \to H', \theta_{\pi'})$. Then, there exists a functor

$$\mathsf{M}_{(f,g)}: \ _{(\pi',\phi_{H'},\theta_{\pi'})}\mathsf{Mod} \ \rightarrow \ _{(\pi,\phi_H,\theta_{\pi})}\mathsf{Mod}$$

defined on objects by

$$\mathsf{M}_{(f,g)}((P,Q,\phi_P,\varphi_P,\phi_Q,\tau))$$

$$\phi = (P, Q, \phi_P^{\pi} = \phi_P \circ (f \otimes P), \varphi_P^{\pi} = \varphi_P \circ (g \otimes P), \phi_Q^{\pi} = \phi_Q \circ (f \otimes Q), \tau)$$

and on morphisms by the identity.

For all generalized invertible 1-cocycle $(\pi : B \to H, \theta_{\pi})$, (π, id_{H}) is an isomorphism between the generalized invertible 1-cocycles $(\pi : B \to H, \theta_{\pi})$ and $(id_{H} : H_{\pi} \to H, \sigma_{\pi})$ Therefore, the functor

$$\mathsf{M}_{(\pi, \mathit{id}_H)}: \ _{(\mathit{id}_H, \mathsf{\Gamma}_H^{\sigma_\pi}, \sigma_\pi)}\mathsf{Mod} \ \rightarrow \ _{(\pi, \phi_H, \theta_\pi)}\mathsf{Mod}$$

is an isomorphism where $\mathsf{M}_{(\pi^{-1}, \mathit{id}_H)}$: $(\pi, \phi_H, \theta_\pi) \mathsf{Mod} \rightarrow (\mathit{id}_H, \Gamma^{\sigma_\pi}_H, \sigma_\pi) \mathsf{Mod}$ is the inverse.

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses Modules for Hopf trusses The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

Let $\mathbb H$ be a Hopf truss. There exists a functor

$$G_{\mathbb{H}} : {}_{\mathbb{H}}\mathsf{Mod} \rightarrow {}_{(id_{H},\Gamma_{H_{1}}^{\sigma_{H}},\sigma_{H})}\mathsf{Mod}$$

defined on objects by

$$\mathsf{G}_{\mathbb{H}}((M,\psi_{M}^{1},\psi_{M}^{2})) = (M,M,\widehat{\phi}_{M} = \Gamma_{M}^{\sigma_{H}},\widehat{\varphi}_{M} = \psi_{M}^{1},\overline{\phi}_{M} = \psi_{M}^{2}, \mathsf{id}_{M})$$

and on morphisms by $G_{\mathbb{H}}(f) = (f, f)$.

Preliminaries and notations Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak Twisted post-Hopf algebras and Hopf trusses Weak twisted Relative Rota-Baxter operators and Hopf trusses **Modules for Hopf trusses** The Fundamental Theorem of Hopf modules for Hopf trusses

Theorem

Let $(\pi : B \to H, \theta_{\pi})$ be a generalized invertible 1-cocycle. There exists a functor

$$\mathsf{H}^{\pi}$$
 : $(\pi, \phi_{H}, \theta_{\pi})$ Mod $\rightarrow \mathbb{H}_{\pi}$ Mod

defined on objects by

$$\mathsf{H}^{\pi}((M,N,\phi_{M},\varphi_{M},\phi_{N},\gamma))=(M,\overline{\psi}_{M}^{1}=\varphi_{M},\overline{\psi}_{M}^{2}=\gamma\circ\phi_{N}\circ(\pi^{-1}\otimes\gamma^{-1}))$$

and on morphisms by $H^{\pi}((h, l)) = h$.

Theorem

Let $(\pi : B \to H, \theta_{\pi})$ be a generalized invertible 1-cocycle. Then the categories $(\pi, \phi_H, \theta_{\pi})$ Mod and \mathbb{H}_{π} Mod are equivalent.

Proof

$$\begin{split} \mathsf{H}^{\pi} \circ (\mathsf{M}_{(\pi, \mathit{id}_{H})} \circ \mathsf{G}_{\mathbb{H}_{\pi}}) = \mathsf{id}_{\mathbb{H}_{\pi} \operatorname{\mathsf{Mod}}}, \\ (\mathsf{M}_{(\pi, \mathit{id}_{H})} \circ \mathsf{G}_{\mathbb{H}_{\pi}}) \circ \mathsf{H}^{\pi} \simeq \mathsf{id}_{(\pi, \phi_{H}, \theta_{\pi}) \operatorname{\mathsf{Mod}}}. \end{split}$$

When we particularize the previous results to modules asocciated to Hopf braces and invertible 1-cocycles we have the categorical equivalences obtained in:

J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez, A.B. Rodríguez Raposo: Modules over invertible 1-cocycles, Turkish J. Math. 70, 5146-5156 (2024).

The Fundamental Theorem of Hopf modules for Hopf trusses

Preliminaries and notations

2 Hopf trusses

Bopf trusses and generalized invertible 1-cocycles

Weak Twisted post-Hopf algebras and Hopf trusses

6 Weak twisted Relative Rota-Baxter operators and Hopf trusses

6 Modules for Hopf trusses

The Fundamental Theorem of Hopf modules for Hopf trusses

In this section we will assume that C admits equalizers. As a consequence every idempotent morphism in C splits, i.e., if $q: M \to M$ is a morphism in C such that $q = q \circ q$, there exists an object I(q), called the image of q, and morphisms $i: I(q) \to M$ and $p: M \to I(q)$ such that $q = i \circ p$ and $p \circ i = id_{I(q)}$. The morphisms p and i will be called a factorization of q. Note that I(q), p and i are unique up to isomorphism.

Definition

Let D be a coalgebra in C. The pair (M, ρ_M) is a left D-comodule if M is an object in C and $\rho_M : M \to D \otimes M$ is a morphism in C satisfying

$$(\varepsilon_D \otimes M) \circ \rho_M = id_M, \quad (D \otimes \rho_M) \circ \rho_M = (\delta \otimes M) \circ \rho_M.$$

Given two left *D*-comodules (M, ρ_M) and (N, ρ_N) , a morphism $f : M \to N$ in C is a morphism of left *D*-comodules if $(D \otimes f) \circ \rho_M = \rho_N \circ f$. Left *D*-comodules with morphisms of left *D*-comodules form a category which we denote by ^DComod.

Definition

Let D be a coalgebra such that there exits a coalgebra morphism $e : K \to D$. Let (M, ρ_M) be a left D-comodule. We define the subobject of coinvariants of M, denoted by M_e^{coD} , as the equalizer object of ρ_M and $e \otimes M$. Then, we have an equalizer diagram

$$M_{e}^{coD} \xrightarrow{j_{M}^{e}} M \xrightarrow{\rho_{M}} D \otimes M$$

where j_M^e denotes the equalizer (inclusion) morphism.

Notation

If *H* is a Hopf algebra, the unit η_H is a coalgebra morphism. Then, Let (M, ρ_M) be a left *D*-comodule, we will denote the equalizer object of ρ_M and $\eta_H \otimes M$ by M^{coH} and the equalizer morphism by j_M .

Definition

Let B be a non-unital bialgebra. A non-unital left B-Hopf module is a triple (M, φ_M, ρ_M) where (M, φ_M) is a non-unital left B-module, (M, ρ_M) is a left B-comodule and

$$\varphi_{M} \circ \rho_{M} = (\mu_{B} \otimes \varphi_{M}) \circ (B \otimes c_{B,B} \otimes M) \circ (\delta_{B} \otimes \rho_{M})$$

holds. Non-unital left *B*-Hopf modules with left linear and colinear morphisms form a category which we denote by B-Hopf-mod.

Remark

The definition for left H-Hopf modules over a Hopf algebra H is similar changing nonunital left H-modules by left H-modules. Then, in this case we will denote the category of H-Hopf modules by H-Hopf-Mod.

Let *H* be a Hopf algebra, it easy to show that, if (M, φ_M, ρ_M) is a left *H*-Hopf module, the endomorphism $q_M : M \to M$, defined by

$$q_M = \varphi_M \circ (\lambda_H \otimes M) \circ \rho_M$$

is idempotent and satisfies $\rho_M \circ q_M = \eta_H \otimes q_M$. Therefore, there exists a unique morphism

$$t_M: M \to M^{coF}$$

such that

$$t_M \circ j_M = q_M$$
.

Let $I(q_M)$ be the image of the idempotent morphism q_M and let $i_M : I(q_M) \to M$ and $p_M : M \to I(q_M)$ be the morphisms such that that $q_M = i_M \circ p_M$ and $p_M \circ i_M = id_{I(q_M)}$. The morphism

$$\omega_M = t_M \circ i_M : I(q_M) \to M^{coh}$$

is an isomorphism with inverse $\omega_M^{-1} = p_M \circ j_M$.

The object $H \otimes M^{coH}$ is a left *H*-Hopf module with action

$$\varphi_{H\otimes M^{coH}} = \mu_H \otimes M^{coH}$$

and coaction

$$\rho_{H\otimes M^{coH}} = \delta_H \otimes M^{coH}.$$

The Fundamental Theorem of Hopf modules asserts that $H \otimes M^{coH}$ is isomorphic to M in the category H-Hopf-Mod. The isomorphism is defined by

$$\theta_M = \varphi_M \circ (H \otimes j_M) : H \otimes M^{coH} \to M$$

where $\theta_M^{-1} = (H \otimes t_M) \circ \rho_M$.

In the same way as in the case of M^{coH} , if X is an object in C, the tensor product $H \otimes X$, with the action and coaction induced by the product and the coproduct of H, is a left H-Hopf module. Then, there exists a functor

$$F = H \otimes -: C \rightarrow H$$
-Hopf-Mod

called the induction functor.

Also, for all $M \in$ H-Hopf-Mod, the construction of M^{coH} is functorial. Thus, there exists a new functor

$$G = ()^{coH} : H-Hopf-Mod \rightarrow C,$$

called the functor of coinvariants, such that $F \dashv G$.

Moreover, F and G induce an equivalence between the categories H-Hopf-Mod and C.

Definition

Let $\mathbb{H} = (H_1, H_2, \sigma_H)$ be a Hopf truss. A left Hopf module over \mathbb{H} (left \mathbb{H} -Hopf module) is a 4-tuple $(M, \psi_M^1, \psi_M^2, \rho_M)$ such that:

- (i) The triple (M, ψ_M^1, ψ_M^2) is a left \mathbb{H} -module.
- (ii) The triple (M, ψ_M^1, ρ_M) is a left H_1 -Hopf module.
- (iii) The triple (M, ψ_M^2, ρ_M) is a non-unital left H_2 -Hopf module.
- (iv) The identity $\psi_M^1 \circ (\sigma_H \otimes j_M) = \psi_M^2 \circ (H \otimes j_M)$ holds.

A morphism of left Hopf modules over $\mathbb H$ is a morphism of left $\mathbb H\text{-modules}$ and left H-comodules. Left Hopf modules over $\mathbb H$ with morphisms of left Hopf modules form a category which we denote by $\mathbb H\text{-Hopf-Mod}.$

Note that, this definition is a generalization to the Hopf truss setting of the notion of Hopf module over a Hopf brace introduced in

• R. González Rodríguez, The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70, 5146-5156 (2022).

Example

Let X be an object in C and let $\mathbb{H} = (H_1, H_2, \sigma_H)$ be a Hopf truss. Then, the 4-tuple

$$(H \otimes X, \psi_{H \otimes X}^1 = \mu_H^1 \otimes X, \psi_{H \otimes X}^2 = \mu_H^2 \otimes X, \rho_{H \otimes X} = \delta_H \otimes X)$$

is a left $\mathbb H\text{-}\mathsf{Hopf}$ module.

Theorem

Let $\mathbb H$ be a Hopf truss. There exists a functor $V=H\otimes -:C\ \to \mathbb H\text{-Hopf},$ called the induction functor, defined on objects by

$$\mathsf{V}(X) = (H \otimes X, \psi^1_{H \otimes X}, \psi^2_{H \otimes X}, \rho_{H \otimes X})$$

and on morphisms by $V(f) = H \otimes f$.

Theorem (Fundamental Theorem of Hopf modules)

Let \mathbb{H} be a Hopf truss and let $(M, \varphi_M, \psi_M, \rho_M)$ be an object in \mathbb{H} -Hopf-Mod. Then $(M, \psi_M^1, \psi_M^2, \rho_M)$ and $V(M^{coH_1})$ are isomorphic in \mathbb{H} -Hopf-Mod.

Theorem

Let $\mathbb H$ be a Hopf truss. There exists a functor $\mathsf W=(\)^{co\mathbb H}:\mathbb H\text{-Hopf-Mod}\to\mathsf C,$ called the functor of coinvariants, defined on objects by

$$W((M,\psi_M^1,\psi_M^2,\rho_M))=M^{co\mathbb{H}},$$

where $M^{co\mathbb{H}} = M^{co\mathbb{H}_1}$ and on morphisms $f : M \to N$ by $W(f) = f^{co\mathbb{H}}$, where $f^{co\mathbb{H}} = f^{co\mathbb{H}_1}$ is the unique morphism such that $j_N \circ f^{co\mathbb{H}_1} = f \circ j_M$.

Theorem

Let $\mathbb H$ a Hopf truss. The induction functor $\mathsf V=\mathsf H\otimes-:\mathsf C\to\mathbb H\text{-Hopf-Mod}$ is left adjoint of the functor of coinvariants $\mathsf W=(\)^{\mathsf{co}\mathbb H}:\mathbb H\text{-Hopf-Mod}\to\mathsf C$ and they induce a categorical equivalence between $\mathbb H\text{-Hopf-Mod}$ and C.

If we particularize the previous theorems to the case of Hopf braces we have the Fundamental Theorem of Hopf Modules and the associated categorical equivalence obtained in

• R. González Rodríguez: The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70, 5146-5156 (2022).

References

- R. González Rodríguez: The fundamental theorem of Hopf modules for Hopf braces, Linear Multilinear Algebra 70, 5146-5156 (2022).
- J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez, A.B. Rodríguez Raposo: Modules over invertible 1-cocycles, Turkish J. Math. 70, 5146-5156 (2024).
- J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez: Categorical isomorphisms for Hopf braces, arXiv:2311.05235.
- R. González Rodríguez, A.B. Rodríguez Raposo: Categorical equivalences for Hopf trusses and their modules, arXiv:2312.06520.
- J.M. Fernández Vilaboa, R. González Rodríguez, B. Ramos Pérez: Twisted post-Hopf algebras, twisted relative Rota-Baxter operators and Hopf trusses, ar-Xiv:2402.016704.

Personal webpage: https://dma.uvigo.es/~rgon/

Thank you