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Unless otherwise stated, in this talk C denotes a strict braided monoidal category
with tensor product ®, unit object K and braiding c.
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Hopf quasigroups

Unless otherwise stated, in this talk C denotes a strict braided monoidal category
with tensor product ®, unit object K and braiding c.

Recall that a monoidal category is a category C together with a functor
®:CxC—C

called tensor product, an object K of C, called the unit object, and families of
natural isomorphisms

aynp,: MIN)QP->M(N®P), ry: MK —=M, Ily:KQM— M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

am,N,PeQ © aMan,p,q = (idu @ an,p,Q) © am,nwP,Q © (am,n,p © idQ),

(idy ® In) 0 am, kv = rv Q idy,

where for each object X in C, idx denotes the identity morphism of X.
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Hopf quasigroups

Unless otherwise stated, in this talk C denotes a strict braided monoidal category
with tensor product ®, unit object K and braiding c.

Recall that a monoidal category is a category C together with a functor
®:CxC—C

called tensor product, an object K of C, called the unit object, and families of
natural isomorphisms

aynp,: MIN)QP->M(N®P), ry: MK —=M, Ily:KQM— M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

am,N,PeQ © aMan,p,q = (idu @ an,p,Q) © am,nwP,Q © (am,n,p © idQ),

(idy ® In) 0 am, kv = rv Q idy,
where for each object X in C, idx denotes the identity morphism of X.

A monoidal category is called strict if the constraints of the previous paragraph are
identities.
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Hopf quasigroups

Unless otherwise stated, in this talk C denotes a strict braided monoidal category
with tensor product ®, unit object K and braiding c.

Recall that a monoidal category is a category C together with a functor
®:CxC—C

called tensor product, an object K of C, called the unit object, and families of
natural isomorphisms

aynp,: MIN)QP->M(N®P), ry: MK —=M, Ily:KQM— M,

in C, called associativity, right unit and left unit constraints, respectively, satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

am,N,PeQ © aMan,p,q = (idu @ an,p,Q) © am,nwP,Q © (am,n,p © idQ),

(idy ® In) 0 am, kv = rv Q idy,
where for each object X in C, idx denotes the identity morphism of X.

A monoidal category is called strict if the constraints of the previous paragraph are
identities.

It is a well-known fact that every non-strict monoidal category is monoidal equi-
valent to a strict one. This lets us to treat monoidal categories as if they were
strict and, as a consequence, the results proved in a strict setting hold for every
non-strict monoidal category.
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A braiding for a strict monoidal category C is a natural family of isomorphisms
cun:MON—-NM

subject to the conditions

cm,nep = (idy @ cp,p) © (cu,n ® idp), cugn,p = (em,p ® idy) o (idy @ cn,p)

for all M,N,P € C.
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Hopf quasigroups

A braiding for a strict monoidal category C is a natural family of isomorphisms
cun:MON—-NM

subject to the conditions

cm,nep = (idy @ cp,p) © (cu,n ® idp), cugn,p = (em,p ® idy) o (idy @ cn,p)

for all M,N,P € C.

If
cN,M © CvN = idpmgn

for all M, N in C, we will say that C is symmetric.
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Hopf quasigroups

A braiding for a strict monoidal category C is a natural family of isomorphisms
cun:MON—-NM

subject to the conditions

cm,nep = (idy @ cp,p) © (cu,n ® idp), cugn,p = (em,p ® idy) o (idy @ cn,p)

for all M,N,P € C.
If
cN,M © CvN = idpmgn

for all M, N in C, we will say that C is symmetric.

For simplicity of notation, given objects M, N, P in C and a morphism f : M — N, we
will write P ® f for idp ® f and f ® P for f ® idp.
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Hopf quasigroups

A magma in C is a pair A = (A, ua), where A is an object in C and pg : AR A — A
(product) is a morphism in C.

A unital magma in C is a triple A = (A, na, pna), where (A, ua) is a magma in C and
na : K — A (unit) is a morphism in C such that

pao (A®na) =ida=pao(na®A).
A monoid in C is a unital magma A = (A, na, 1a) in C satisfying

pao (A® pa) = pao (pa ® A),

i.e., the product 4 is associative.
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Definition

A magma in C is a pair A = (A, ua), where A is an object in C and pg : AR A — A
(product) is a morphism in C.

A unital magma in C is a triple A = (A, na, pna), where (A, ua) is a magma in C and
na : K — A (unit) is a morphism in C such that

pao (A®na) =ida=pao(na®A).
A monoid in C is a unital magma A = (A, na, 1a) in C satisfying
rao (A® pa) = pao (pa® A),

i.e., the product 4 is associative.

| A\

Definition
Given two unital magmas (monoids) A and B, f : A — B is a morphism of unital
magmas (monoids) if fona =ng and pgo (f @ f) = f o pa.
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Hopf quasigroups

Definition

A magma in C is a pair A = (A, ua), where A is an object in C and pg : AR A — A
(product) is a morphism in C.

A unital magma in C is a triple A = (A, na, pna), where (A, ua) is a magma in C and
na : K — A (unit) is a morphism in C such that

pao (A®na) =ida=pao(na®A).
A monoid in C is a unital magma A = (A, na, 1a) in C satisfying
rao (A® pa) = pao (pa® A),

i.e., the product p4 is associative.

Definition
Given two unital magmas (monoids) A and B, f : A — B is a morphism of unital
magmas (monoids) if fona =ng and pgo (f @ f) = f o pa.

If A, B are are unital magmas (monoids), A® B is also a unital magma (monoid)
where

NA®B =NA® 1B, HAgB = (kA @ up) o (A® cg.a ® B).
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Definition

A comagma in C is a pair D = (D, ép), where D is an object in C and 6p : D — D® D
(coproduct) is a morphism in C. A counital comagma in C is a triple D = (D, ep, dp),
where (D, dp) is a comagma in C and ep : D — K (counit) is a morphism in C such
that (ep ® D) 0 dp = idp = (D ® ep) 0 dp. A comonoid in C is a counital comagma in
C satisfying (0p ® D) o dp = (D ® dp) o dp, i.e., the coproduct dp is coassociative.
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Definition

A comagma in C is a pair D = (D, ép), where D is an object in C and 6p : D — D® D
(coproduct) is a morphism in C. A counital comagma in C is a triple D = (D, ep, dp),
where (D, dp) is a comagma in C and ep : D — K (counit) is a morphism in C such
that (ep ® D) 0 dp = idp = (D ® ep) 0 dp. A comonoid in C is a counital comagma in
C satisfying (0p ® D) o dp = (D ® dp) o dp, i.e., the coproduct dp is coassociative.

Definition

If D and E are counital comagmas (comonoids) in C, f : D — E is a morphism of
counital comagmas (comonoids) if e o f = ¢ep, and (f® f)odp =dg o f.
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Definition

A comagma in C is a pair D = (D, ép), where D is an object in C and 6p : D — D® D
(coproduct) is a morphism in C. A counital comagma in C is a triple D = (D, ep, dp),
where (D, dp) is a comagma in C and ep : D — K (counit) is a morphism in C such
that (ep ® D) 0 dp = idp = (D ® ep) 0 dp. A comonoid in C is a counital comagma in
C satisfying (0p ® D) o dp = (D ® dp) o dp, i.e., the coproduct dp is coassociative.

Definition

If D and E are counital comagmas (comonoids) in C, f : D — E is a morphism of
counital comagmas (comonoids) if e o f = ¢ep, and (f® f)odp =dg o f.

Moreover, if D, E are counital comagmas (comonoids), D ® E is a counital comagma
(comonoid), where

epoE =€p ®€E, Opge =(D®cpe® E)o (dp ® 0)-
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Definition

Let f: D — A and g : D — A be morphisms between a comagma D and a magma A.
We define the convolution product by

frxg=pao(f®g)odp.
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Let f: D — A and g : D — A be morphisms between a comagma D and a magma A.
We define the convolution product by

frxg=pao(f®g)odp.

If A is unital and D counital, we will say that f is convolution invertible if there exists
f*: D — A such that
fxf*= f**fZED®77A.
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Hopf quasigroups

Definition

A non-associative bimonoid in the category C is a unital magma (H, ny, puy) and a co-
monoid (H, ey, dy) such that £y and §y are morphisms of unital magmas (equivalently,
1 and py are morphisms of counital comagmas). Then the following identities hold:

eqony =idk, €HOpH=¢eH R EH,

OHOMH =NH ®@NH, OHOopuH = (LH @ 1H) © IHGH-
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Hopf quasigroups

Definition

A non-associative bimonoid in the category C is a unital magma (H, ny, puy) and a co-
monoid (H, ey, dy) such that £y and §y are morphisms of unital magmas (equivalently,
1 and py are morphisms of counital comagmas). Then the following identities hold:

eqony =idk, €HOpH=¢eH R EH,

OHOMH =NH ®@NH, OHOopuH = (LH @ 1H) © IHGH-

Definition

A non-associative bimonoid is called cocommutative if 0y = cpy,H 0 OH.

Wreath products and factori: s for Hopf quasigroups Wereath products and factorizations for Hopf quasigroups




Hopf quasigroups

J. Klim, S. Majid: Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323
(2010), 3067-3110. (C = F-Vect)

A Hopf quasigroup H in C is a non-associative bimonoid such that there exists a morp-
hism Ay : H — H in C (called the antipode of H) satisfying

MHO()\H®MH)O(5H®H):EH®H:;LHO(H®MH)O(H®>\H®H)O((SH®H)

and

pr o (pH @ H)o (HR® Ay ®@ H)o (H® o) = H®en = pn o (H ® An) o (H ® 61)-
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Hopf quasigroups

Definition

J. Klim, S. Majid: Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323
(2010), 3067-3110. (C = F-Vect)

A Hopf quasigroup H in C is a non-associative bimonoid such that there exists a morp-
hism Ay : H — H in C (called the antipode of H) satisfying

,uHo()\H@MH)O(&H@H):&‘H®H:;LHO(H®MH)O(H®>\H®H)O((SH®H)
and

pr o (pH @ H)o (HR® Ay ®@ H)o (H® o) = H®en = pn o (H ® An) o (H ® 61)-

Note that composing with H ® ny in the first equality we obtain that
AH * idy = ey @ Ny,
and composing with ny ® H in the second one we obtain

idy * Ay = ey @ ny-

Therefore, Ay is convolution invertible and \* = idy.
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If H is a Hopf quasigroup in C we know that the antipode Ay is unique. )
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Hopf quasigroups

If H is a Hopf quasigroup in C we know that the antipode Ay is unique.

Also, the antipode is antimultiplicative and anticomultiplicative, i.e.,

AH O piy = f14 O CH,H © (AH @ AH),
OO Ay = ()\H®)\H)O CH,HO(SH

and leaves the unit and the counit invariable:

AHOMH =1MH, EHOAH =EH-
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Hopf quasigroups

If H is a Hopf quasigroup in C we know that the antipode Ay is unique. }

Also, the antipode is antimultiplicative and anticomultiplicative, i.e.,
AH O piy = f14 O CH,H © (AH @ AH),

6HO)‘H:()‘H®)‘H)OCH,H06H

and leaves the unit and the counit invariable:

AHOMH =1MH, EHOAH =EH-

Definition

A morphism between Hopf quasigroups H and B is a morphism f : H — B of unital
magmas and comonoids, i.e., a morphism of non-associative bimonoids.

Then the equality
Agof=Ffoly

holds.
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Hopf quasigroups

If H is a Hopf quasigroup in C we know that the antipode Ay is unique. J

Also, the antipode is antimultiplicative and anticomultiplicative, i.e.,
AH O piy = f14 O CH,H © (AH @ AH),

6HOAH:()‘H®)‘H)OCH,H06H

and leaves the unit and the counit invariable:

AHOMH =1MH, EHOAH =EH-

Definition

A morphism between Hopf quasigroups H and B is a morphism f : H — B of unital
magmas and comonoids, i.e., a morphism of non-associative bimonoids.

Then the equality
Agof=Ffoly

holds.

A Hopf quasigroup H is associative if, and only if, H is a Hopf monoid (algebra).)
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Example

Suppose that C = Set. Then L is a Hopf quasigroup in C if, and only if, L is an IP loop.
An IP loop is a set L with a product, identity e;, and with the property that for each
u € L there exists u—! € L (the inverse of u) such that

vt w)=v, (wult=v, Vvel

As a consequence, it is easy to show that , if L is an IP loop, for all u € L the element
uv'u = e = wu~t, u! is unique and (ut=1)~! = u. Moreover, (uv)~! = v~ 1y~1
holds for any pair of elements u,v € L.

Note that in this case L is a cocommutative Hopf quasigroup because

or(u) = (u, u).
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Suppose that C is F-Vect. Let L be an IP loop. Then, the loop algebra

FlL] = @]Fu

uel

is a cocommutative non-associative bimonoid with unit ng(;(1r) = ey, product defined
by linear extension of the one defined in L, and coproduct and counit

Sppy(u) = u®u, eppy(u) = 1.

Also, it is a Hopf quasigroup where the antipode is defined by the linear extension of
the map

A]F[L](u) =",
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Example

Let F be a field. A Malcev algebra over F is an anticommutative algebra (M, [,]) such
that
[U(a, b,c),a] = J(a, b, [a, c]),
where J(a, b, ¢) = [[a, b], c] — [[a, c], b] — [a, [b, c]] denotes the Jacobian in a, b, c.
As was proved in
J. Klim, S. Majid: Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323
(2010), 3067-3110,
if the characteristic of F is different of 2 and 3, then the universal enveloping algebra
U(M), introduced by
J.M. Pérez lzquierdo, |.P. Shestakov: An envelope for Malcev algebras, J. Algebra
272 (2004), 379-393,

admits a cocommutative Hopf quasigroup structure.
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Distributive laws for Hopf quasigroups

© Distributive laws for Hopf quasigroups
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Distributive laws for Hopf quasigroups

Let H, A be Hopf quasigroups. A morphism

V:HRA—AQH
is said to be a distributive law of H over A if the following identities
Vo(HRpa)o(AH @AM ®A) = (ua®H)o (AR W) o (VR A)o (Ay ®Aa ® A),

Vo (uy®@A)o(HRAH® M) = (AR up)o (WR H)o(HR WV)o (H® Ay ® Aa),
Vo(H®na)=ma®H, Vo(mu®A)=ARQnH,

hold.
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Distributive laws for Hopf quasigroups

Let H, A be Hopf quasigroups. A morphism
V:HRA—AQH
is said to be a distributive law of H over A if the following identities
Vo(HRpa)o(AH @AM ®A) = (ua®H)o (AR W) o (VR A)o (Ay ®Aa ® A),

Vo (uy®@A)o(HRAH® M) = (AR up)o (WR H)o(HR WV)o (H® Ay ® Aa),
Vo(H®na)=ma®H, Vo(mu®A)=ARQnH,
hold.

If the antipodes of H and A are isomorphisms, the two first identities are equivalent to
Vo (H®ua) = (1a® H)o (A W) o (Ve A),

Vo (uy®A)=(A® un)o(V®H)o (He V),

respectively. Then, in this case, the conditions of the definition of distributive law for
Hopf quasigroups are the ones that we can find in the classical definition of distributive
law between monoids, i.e., W is compatible with the unit and the product of A and H.
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Definition

Let H, A be Hopf quasigroups and let V: H® A — A ® H be a distributive law of H
over A. The distributive law WV is said to be comonoidal if it is a comonoid morphism,
i.e., the following identities

(EA®€H)O\V:€H®EA, 5A®HO\|J:(\|J®\U)O6H®A,

hold.
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Let H, A be Hopf quasigroups and let W : H® A — A® H be a comonoidal distributive
law of H over A. We will say that W is an a-comonoidal distributive law of H over A if
the following identities

(AQuy)o(VRuy)o(HRIVRH)o ((AHRH)ody) RARH) =ey QAR H,
(A®pn)o (Ve pun)o(HOV R H)o (HRAn)odn) RA®H)=en ® A® H,
(ha®H)o (La@W)o (AR VR A)o (AR®H® ((Aa®A)oda)) =AR® H®en,

(1A @ H) o (a @ W) o (AQWRA) o (AR H® ((A®Aa)0da) = AR H®ea,
hold.
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Distributive laws for Hopf quasigroups

Definition

Let H, A be Hopf quasigroups and let W : H® A — A® H be a comonoidal distributive
law of H over A. We will say that W is an a-comonoidal distributive law of H over A if
the following identities

(AQuy)o(VRuy)o(HRIVRH)o ((AHRH)ody) RARH) =ey QAR H,
(A®pn)o (Ve pun)o(HOV R H)o (HRAn)odn) RA®H)=en ® A® H,
(ha®H)o (La@W)o (AR VR A)o (AR®H® ((Aa®A)oda)) =AR® H®en,

(1A @ H) o (a @ W) o (AQWRA) o (AR H® ((A®Aa)0da) = AR H®ea,
hold.

Note that, if H and A are Hopf algebras and W : H® A — A® H is a distributive law
between the monoids H and A, the previous equalities always hold. J
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Theorem

Let A and H be Hopf quasigroups. Let ¥V : H® A — A ® H be an a-comonoidal
distributive law of H over A. Then the wreath product A ®y H built on A ® H with
tensor unit, counit, coproduct and with the product and antipode defined by

pagyH = (Ha ® pH) o (A® VY ® H),

and
Mgy = Vo (Ay ® Aa) o capy,

is a Hopf quasigroup.
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Distributive laws for Hopf quasigroups

Theorem

Let A and H be Hopf quasigroups. Let ¥V : H® A — A ® H be an a-comonoidal
distributive law of H over A. Then the wreath product A ®y H built on A ® H with
tensor unit, counit, coproduct and with the product and antipode defined by

pagyH = (Ha ® pH) o (A® VY ® H),

and
Mgy = Vo (Ay ® Aa) o capy,

is a Hopf quasigroup.

Therefore, thanks to the previous theorem, we can assert that a-comonoidal distributive
laws induce a Hopf quasigroup structure on the tensor product of two Hopf quasigroups.
Now, we could also ask under what conditions a Hopf quasigroup structure defined on
the tensor product of two Hopf quasigroups is induced by an a-comonoidal distributive
law. The following result will address this question.
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Distributive laws for Hopf quasigroups

Let A and H be Hopf quasigroups. Suppose that

AOH=(A® H,ma0H = NAQH: LAGH EAOH = EARH, OAOH = JAQH> MOH)

is a Hopf quasigroup. If the following equalities hold
pacH = (ka ® H) o (A® (pacH © (na ® H® A® H))),

pacH = (A® pnH) o ((pacH o (A® H® A® 1)) ® H),
paoH © ((LagH © (A @ Ay ® AA ® 1H)) @ A® 1)
= paoH © (1A ® AH ® (HaoH © (Aa ® 1H ® A ® 1)),
paoH © (HaoH © (Ma @ H®na ® An)) @ Aa @ ni)
= paeH o (Ma® H® paoH © (Na & An ® Aa @ 1)),
AeH © (na ® H) =na @ Ap,

AoH © (A®1H) = XA ® 14,

then the morphism
M= paoHo (MA@ HR A®nH)

is an a-comonoidal distributive law and A® H = A ®r H as Hopf quasigroups.
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Examples of distributive laws for Hopf quasigroups

© Examples of distributive laws for Hopf quasigroups
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Examples of distributive laws for Hopf quasigroups

In this example we will see that R-smash product of Hopf quasigroups introduced in

T. Brzezinski, Z. Jiao: R-smash products of Hopf quasigroups, Arabian J. Math.,
1 (2012), 39-46.

is induced by a a-comonoidal distributive law.
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Example

In this example we will see that R-smash product of Hopf quasigroups introduced in

T. Brzezinski, Z. Jiao: R-smash products of Hopf quasigroups, Arabian J. Math.,
1 (2012), 39-46.

is induced by a a-comonoidal distributive law.

Let A, H be Hopf quasigroups in C with antipodes A, Ay, respectively. Let
R:HRA—-AQ®H
be a morphism satisfying the following conditions:
(ea®H)oR=H®ep,

Ro(H® pa) = (na® H)o (A R) o (R ® A).
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Examples of distributive laws for Hopf quasigroups

Define the R-smash product of A and H, denoted by A xr H, as

Axp H=(A® H,NAxgH> HAxigH EAxgH> OAxgHs AAxigH)
where
NAxgH = NA®H, EAxgH = EA®RH, OAxgH = 0AgH

and
HaxgH = (1A ® pH) o (A® R ® H),

MxigH = Ro (Ay ® Ay) o ca H-
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Examples of distributive laws for Hopf quasigroups

Define the R-smash product of A and H, denoted by A xr H, as
Axp H=(A® H,NAxgH> HAxigH EAxgH> OAxgHs AAxigH)

where
NAxgH = NA®H, EAxgH = EA®RH, OAxgH = 0AgH

and
HaxgH = (1A ® pH) o (A® R ® H),

MxigH = Ro (Ay ® Ay) o ca H-

Then Brzezinski and Jiao proved that A xg H is a Hopf quasigroup if, and only if,
@ R is a comonoid morphism.

Ro(H®na)=ma®H, Ro(ny®A)=A®nH.

Ro (10 (H® M) ® A) = (A® ) o (R® H) o (H® (Ro (A ® A)).

(A®en)oRocaHo (A®AH) O R=¢ey ® A.
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Then, if Axgr H is a Hopf quasigroup, it is easy to show that
= paxgHo(MA®H®AR®nNH) =R
is an a-comonoidal distributive law and
AxrH=A®rH

as Hopf quasigroups.
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Examples of distributive laws for Hopf quasigroups

For the following examples, it is necessary to introduce some additional notions. J
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Examples of distributive laws for Hopf quasigroups

For the following examples, it is necessary to introduce some additional notions. J

Definition

Let H be a Hopf quasigroup. The pair (M, pp) is said to be a left H-module if M is
an object in C and pp : H® M — M is a morphism in C (called the action) satisfying

emo (ny ® M) = idy

and
em o (H® om) = em o (ky & M).

Given two left H-modules (M, ), (N, ¢n) and a morphism f : M — N in C, we will
say that f is a morphism of left H-modules if

eno(H®f)=fopm.
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We denote the category of left H-modules by ,C. It is easy to prove that, if (M, )
and (N, ¢p) are left H-modules, the tensor product M ® N is a left H-module with the
diagonal action

emen = (M @ pn) o (H® cym @ N) o (dy @ M @ N).

This makes the category of left H-modules into a strict monoidal category (HC, ®, K).
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De on

Let H be a Hopf quasigroup. We will say that a unital magma A is a left H-module
magma if it is a left H-module with action

pea HRA— A
and the following equalities
pao (H®na) = en ®na,

HA O Paza = pa° (H® pa),

hold, i.e., na and pp are module morphisms.
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Definition

Let H be a Hopf quasigroup. A comonoid A is a left H-module comonoid if it is a left
H-module with action ¢4 and

EAC A =¢€H B eEa,

da0pa=pagac (H®da),

hold, i.e., €4 and §4 are module morphisms.
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In this example we will show that the theory of double cross products of Hopf quasigroups
in a symmetric setting, introduced in

J.N. Alonso Alvarez, J.M. Fernandez Vilaboa y R. Gonzalez Rodriguez: Mul-
tiplication alteration by two-cocycles. The non-associative version, Bull. Malays.
Math. Sci. Soc. 43 (2020), 3557-3615.

produces examples of a-comonoidal distributive laws.
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Theorem

Let A, H be Hopf quasigroups in a symmetric monoidal category C with antipodes
Aa, Ay, respectively. Let (A, ¢a) be a left H-module comonoid, let (H, ¢y) be a right
A-module comonoid and ¥ = (pa®¢p)odnga. The following assertions are equivalent:

Wereath products and factorizati i Wereath products and factorizations for Hopf quasi,



Examples of distributive laws for Hopf quasigroups

Theorem

Let A, H be Hopf quasigroups in a symmetric monoidal category C with antipodes
Aa, Ay, respectively. Let (A, ¢a) be a left H-module comonoid, let (H, ¢y) be a right
A-module comonoid and ¥ = (pa®¢p)odnga. The following assertions are equivalent:

(i) The double cross product A >t H built on the object A ® H with product
pasH = (pa @ prH) o (A® V ® H)
and tensor product unit, counit and coproduct, is a Hopf quasigroup with antipode

ApsaH = Vo (AH ® )\A) O CAH-
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Theorem

Let A, H be Hopf quasigroups in a symmetric monoidal category C with antipodes
Aa, Ay, respectively. Let (A, ¢a) be a left H-module comonoid, let (H, ¢y) be a right
A-module comonoid and ¥ = (pa®¢p)odnga. The following assertions are equivalent:

(i) The double cross product A >t H built on the object A ® H with product
HasaH = (pa @ pH) o (AR W ® H)
and tensor product unit, counit and coproduct, is a Hopf quasigroup with antipode
Apad = Vo (Ay @ Aa) o ca H-

(i) The equalities

o pao(H®na) =en ®@na, ¢pno (M ®A) =1y ® ea,
(o1 ® pa) 0 duga =canoV,
pao (H® pa)o (A @ Aa @A) = pao (A® pa)o (Vo (Ay® Aa)) ® A),
1O (PH @ pH) o A @V R H) o (0 AR H) =en®ea®@H,,
pH o (¢n @ pun) o (HRV @ H)o (HRAy)ody) AR H) =y ®ea® H,
o1 o (H ® A) o (H® Aw ® Aa) = pun o (¢n ® H) o (H® (Vo (An ® Aa))),
1A © (1A ® pa) o (ARV @A) 0 (AQH®0a) =AQ ey R ea,
° ;,LAO(,u,A®</)A)O(A®\U®A)O(A®H®((>\A®A)05A)):A®EH®EA.

hold.
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Definition

If the conditions of (ii) of the previous theorem hold, we will say that (A, H) is a matched
pair of Hopf quasigroups.
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If the conditions of (ii) of the previous theorem hold, we will say that (A, H) is a matched
pair of Hopf quasigroups.

Theorem

| N

If (A, H) is a matched pair of Hopf quasigroups, then

V = (pa ® dH) © A

is an a-comonoidal distributive law.
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Definition

If the conditions of (ii) of the previous theorem hold, we will say that (A, H) is a matched
pair of Hopf quasigroups.

Theorem

| N

If (A, H) is a matched pair of Hopf quasigroups, then

V = (pa ® dH) © A

is an a-comonoidal distributive law.

Note that in the Hopf algebra setting, the theorem of the previous slide is the non-
associative version of the result proved by Majid in

S. Majid: Foundations of Quantum Group Theory, Cambridge University Press
1995.

for double cross products of Hopf algebras.
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In this example, following Sections 4 and 5 of

J.N. Alonso Alvarez, J.M. Fernandez Vilaboa y R. Gonzalez Rodriguez: Mul-
tiplication alteration by two-cocycles. The non-associative version, Bull. Malays.
Math. Sci. Soc. 43 (2020), 3557-3615,

we provide examples of a-comonoidal distributive laws associated to skew parings bet-
ween Hopf quasigroups.
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Example

In this example, following Sections 4 and 5 of

J.N. Alonso Alvarez, J.M. Fernandez Vilaboa y R. Gonzalez Rodriguez: Mul-
tiplication alteration by two-cocycles. The non-associative version, Bull. Malays.
Math. Sci. Soc. 43 (2020), 3557-3615,

we provide examples of a-comonoidal distributive laws associated to skew parings bet-
ween Hopf quasigroups.

Definition

Let A, H be Hopf quasigroups in a symmetric monoidal category C. A skew pairing
between A and H over K is a morphism 7 : A® H — K satisfying the equalities

0 7o(pa®H)=(TQ7)0(A®can ®H)o (AR A® dy)

070 (A®un)=(T®T)o (AR can ®H)o((canoda)® H® H),
o 7o (A®MH) =<

e To(na®H)=¢epy.
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If 7: A® H— K is a skew pairing, we have that 7 is convolution invertible and
T =70 (A ® H).
Moreover, the following hold:
o T o (A® ) =(T"®7*) 0 (A® cap ® H) o (64 ® H® H)
o T* o (pa®@H)=(T"®7") 0 (A®can ®H) o (AR® A® (cH,H © n))
o 7o (A®nH) =ea,
o 7*o(na®H) =ey.
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X. Fang, B. Torrecillas: Twisted smash products and L-R smash products for
biquasimodule Hopf quasigroups, Comm. Algebra 42 (2014), 4204-4234.

we can find a result proved in the category of vector spaces that in our monoidal setting
is the following:
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X. Fang, B. Torrecillas: Twisted smash products and L-R smash products for
biquasimodule Hopf quasigroups, Comm. Algebra 42 (2014), 4204-4234.

we can find a result proved in the category of vector spaces that in our monoidal setting
is the following:

Theorem

Let A, H be Hopf quasigroups in a symmetric monoidal category C with antipodes \j4,
AH, respectively. Let 7: A® H — K be a skew pairing. Then

Axtr H=(A® H,Nasa-H» lAsa, Hy EAbar Hy OAsar Hy Mpa, H)
is a Hopf quasigroup where:
Nasa, H =NA @ NMH, EAsa,H = €A ® EH, A, H = OAQH,

tava,H = (A ® ) 0 (AR VR H), Msq,H=Vo(Au®Aa)ocan

V=(TRARH®T 1) o(A® H®dagH) 0 dagH O Caa.
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Theorem

Let A, H be Hopf quasigroups in a symmetric monoidal category C with antipodes A4,
AH, respectively. Let 7: A® H — K be a skew pairing. If we define

oa=(TR®ART o (ARH®IA® H)odagnocya: HRA— A
and
bH=TOHRT Ho(ARH®can®H)o(ARH®A® ) 0dagH O CH.A :
H®A— H,
then (A, H) is a matched pair of Hopf quasigroups and
V = (pa ® ¢n) © dnza

is an a-comonoidal distributive law.

Therefore, A 1 H is the double cross product of Hopf quasigroups associated to
(A, H).
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Example

This example is a particular case of the previous one. Let F be a field such that Char(F)#
2 and denote the tensor product over F as ®. Consider the non-abelian group S3 =
{00,01,02,03,04,05}, where oqg is the identity, o(c1) = o(02) = o(c3) = 2 and
o(04) = o(os) = 3. Let u be an additional element such that u? = 1.

By the results proved in

0. Chein: Moufang loops of small order |, Trans. Amer. Math. Soc. 188 (1974)
31-51,

we know that the set
L= M(S3,2) ={oju®*; a=0,1}

is a Moufang loop where the product is defined by

oiu® e ojuf = (of ot ) u P, v =(-1), p=(-1)**.

Then, L is an IP loop and F[L] is a cocommutative Hopf quasigroup.
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Examples of distributive laws for Hopf quasigroups

Let Hs be the 4-dimensional Sweedler Hopf algebra. The basis of Ha is {1, x,y, w = xy}
and the multiplication table is defined by

X y | w
X 1 w |y
y | —w | O 0
w | —y 0 0

The costructure of Hy is given by
Oy (X) =X © X, Oy () =y @ x+1®y, dyy(w) =w@1L+x®w,

EHA(X) = 1y, aHA(y) = EHA(W) =0

and the antipode Ay, is described by

A (X) = X, A (v) = w, Ay (w) = —y.
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Examples of distributive laws for Hopf quasigroups

The morphism 7 : F[L] ® Hs — F defined by

1 si z=1
T(oiu®®z)=< (-1)* si z=x
0 si z=y,w

is a skew pairing. Then, F[L] b Ha is a Hopf quasigroup asociated to the a-comonoidal
distributive law W of F[L] over Hs where

V(1Qoiu*)=ocu*®1, V(xQ®ou*)=ou*QR x,

V(y @ oju®) = (-1)%u® @y, V(wRou®)=(-1)%u*w.
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The morphism 7 : F[L] ® Hs — F defined by
1 si z=1
T(oiu®®z)=< (-1)* si z=x

0 si z=y,w

is a skew pairing. Then, F[L] t<i» Ha is a Hopf quasigroup asociated to the a-comonoidal
distributive law W of F[L] over Hs where

V(1Qoiu*)=ocu*®1, V(xQ®ou*)=ou*QR x,

V(y @ oju®) = (-1)%u® @y, V(wRou®)=(-1)%u*w.

More concretely, F[L] <t Ha = F[L] t<t Ha for the matched pair (F[L], Hs) where the
actions are:

er(1®0iu) = oju®, ¢ (x@oiu®) = aiu®, e (yQoiu®) = eppy(wo;u®) =0
and
PHa(L® 0iuY) =1, Py (x ®oju®) = x, ¢u,(y ® oju®) = (=1)%y,

OHy (W ® oju®) = (=1)%w.

Wereath products and factorizations for Hopf quasigroups Wereath products and factorizations for Hopf quasigroups



Examples of distributive laws for Hopf quasigroups

The multiplication table of F[L] > Ha is

aju5 ®1 Ujuﬁ ® x
ojut @1 oiu* e ajuﬂ®1 oiu*e Ujuﬁ®x
ajua ® x oiu® e O'J'Llﬁ R x oiu® e crjuB ®1

oiu®*®y | (-1)Pou®e P @y | (1) lou®e ogjuP @ w
giu*@w | (=1D)Poiu®e P @w | (-1)P loiu“e oc;uP @y

O'J'Uﬁ Ry U_,-uﬁ @ w
oju*®1 oiu* e crjuﬁ Ry | oju“e crjuﬂ®w
ojut @ x oiu*e ajuﬁ QR w oiu*e J_,-uﬁ Ry
ojut Qy 0 0
ojut @ w 0 0
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The antipode is
A a _ (=1t o
FlLjoa, He (070" ® 1) = 0} u*®1,

_1\a+1
AF[L]par He (TiU% ® X) = Uf Ve e X,

_ a1
Aot Ha (070% ® y) = (-1)% D u @ w,

)04+1

AR[Ljo<, Ha (OiU% @ W) = (—1)°‘+10,(71 U ®y.
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The antipode is
A a _ (=1t o
FlLjoa, He (070" ® 1) = 0} u*®1,

_1\a+1
AF[L]par He (TiU% ® X) = Uf Ve e X,

_ a1
Aot Ha (070% ® y) = (-1)% D u @ w,

_1)a+1
AR[Ljo<, Ha (OiU% @ W) = (—1)0‘“0,( Ve gy

Theorem

| \

F[M(S3,2)] >t Ha is a Hopf quasigroup that is neither commutative nor cocommuta-
tive.
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Factorizations of Hopf quasigroups

@ Factorizations of Hopf quasigroups
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Factorizations of Hopf quasigroups

A Hopf algebra X in F-Vect factorises as
X =AH

if A and H are sub-Hopf algebras of X, with inclusion maps iy and iy, such that the
map
w(a ® h) = ia(a)in(h)

is an isomorphism of vector spaces.

Wreath products and factori:

Wereath products and factorizations for Hopf quasigi




Factorizations of Hopf quasigroups

A Hopf algebra X in F-Vect factorises as
X =AH

if A and H are sub-Hopf algebras of X, with inclusion maps iy and iy, such that the
map
w(a ® h) = ia(a)in(h)

is an isomorphism of vector spaces.

As was proved by Majid in

S. Majid: Foundations of Quantum Group Theory, Cambridge University Press
1995,

X factorises as X = AH if, and only if, there exists a matched pair of Hopf algebras
(A, H) such that X is isomorphic to the double cross product A <t H as Hopf algebras.
v
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Factorizations of Hopf quasigroups

A Hopf algebra X in F-Vect factorises as
X =AH

if A and H are sub-Hopf algebras of X, with inclusion maps iy and iy, such that the

map
w(a® h) = ia(a)in(h)

is an isomorphism of vector spaces.

As was proved by Majid in
S. Majid: Foundations of Quantum Group Theory, Cambridge University Press
1995,

X factorises as X = AH if, and only if, there exists a matched pair of Hopf algebras
(A, H) such that X is isomorphic to the double cross product A <t H as Hopf algebras.
v

The main objective of this final section is to extend this result to the theory of factori-
zations of Hopf quasigroups in a symmetric monoidal category C. J
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Definition

Let X be a Hopf quasigroup in C. Let H, A be Hopf subquasigroups of X with inclusion
morphisms iy : H — X, ia : A — X respectively. Let wx and 0x be the morphisms
defined by

wx:‘u,xo(iA®l'H):A®H4)X, exzuxo(iH®iA):H®A~>X.

We will say that X factorizes as
X =AH

if wx is an isomorphism and the following identities
px o (wx ® X) = px o (ia ® (ux o (in ® X))),
px © (X ® wx) = px o ((1x o (X ® ia)) ® in),
x 0 ((Ox o (An ® Aa)) ® X) = px o ((in © An) ® (x o ((ia © Aa) ® X)),

px o (X ® (0x o (Ay ® Aa))) = px © ((kx o (X ® (in © An)) ® (ia © Aa)),
hold.
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Then, if the antipodes of H and A are isomorphisms, then we can remove the antipodes
in the factorization definition. Then the two last identities become in

px o (0x ® X) = px o (in ® (ux o (ia ® X)),

px 0 (X ®6x) = px o ((kx o (X ® in)) ® ia)-
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Factorizations of Hopf quasigroups

Then, if the antipodes of H and A are isomorphisms, then we can remove the antipodes
in the factorization definition. Then the two last identities become in

px o (0x ® X) = px o (in ® (ux o (ia ® X)),

px 0 (X ®6x) = px o ((kx o (X ® in)) ® ia)-

Example

Suppose that (A, H) is a matched pair of Hopf quasigroups. The double cross product

A H

is a Hopf quasigroup.
The morphisms iy = A®Qny : A —> A Hand iy =1na®H : H—> A H are
morphisms of Hopf quasigroups.
Also, we obtain that
wWasaH = idagH, Oasan =V

and therefore any matched pair of Hopf quasigroups induces an example of factorization.
v
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Let H, A be Hopf subquasigroups of a Hopf quasigroup X. If X factorises as X = AH,
the morphism
V=wlolx  HRA—A®H

is a comonoidal distributive law of H over A. Moreover, if the antipodes of H and A are
isomorphisms W is an a-comonoidal distributive law of H over A.
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Factorizations of Hopf quasigroups

Theorem

Let H, A be Hopf subquasigroups of a Hopf quasigroup X. If X factorises as X = AH,
the morphism
V=wlolx  HRA—A®H

is a comonoidal distributive law of H over A. Moreover, if the antipodes of H and A are
isomorphisms W is an a-comonoidal distributive law of H over A.

Theorem

| A\

Let H, A be Hopf subquasigroups of a Hopf quasigroup X such that the antipodes of
H and A are isomorphisms. Assume that X factorises as X = AH. Then, wx is an
isomorphism of Hopf quasigrous between the wreath product A ®y H and X, where W
is the a-comonoidal distributive law defined in the previous theorem.

A\
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Factorizations of Hopf quasigroups

Let H, A, X be Hopf quasigroups such that the antipodes of H and A are isomorphisms.
If X factorizes as X = AH, there exists a matched pair of Hopf quasigroups (A, H) such
that X is isomorphic to A1 H as Hopf quasigroups.
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Factorizations of Hopf quasigroups

Theorem

Let H, A, X be Hopf quasigroups such that the antipodes of H and A are isomorphisms.
If X factorizes as X = AH, there exists a matched pair of Hopf quasigroups (A, H) such
that X is isomorphic to A1 H as Hopf quasigroups.

Proof

| N

Let W be the morphism defined in the previous theorems. Define the actions by

pa=(A®en)oV, o¢y=(ca®@H)oW.

Wereath products and factorizations for Hopf quasigroups Wereath products and factorizations for Hopf quasigroups



Factorizations of Hopf quasigroups

Let H, A, X be Hopf quasigroups such that the antipodes of H and A are isomorphisms.
Then, X factorizes as X = AH if, and only if, there exists a matched pair of Hopf
quasigroups (A, H) such that X is isomorphic to A< H as Hopf quasigroups.
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Factorizations of Hopf quasigroups

Theorem

Let H, A, X be Hopf quasigroups such that the antipodes of H and A are isomorphisms.
Then, X factorizes as X = AH if, and only if, there exists a matched pair of Hopf
quasigroups (A, H) such that X is isomorphic to A< H as Hopf quasigroups.

v
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Theorem

Let H, A, X be Hopf quasigroups such that the antipodes of H and A are isomorphisms.
Then, X factorizes as X = AH if, and only if, there exists a matched pair of Hopf
quasigroups (A, H) such that X is isomorphic to A< H as Hopf quasigroups.
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